首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a real-time quantitative PCR (qPCR) assay targeting the rRNA internal transcribed spacer region of the hard clam pathogen QPX. The qPCR assay was more sensitive than was histology in detecting clams with light QPX infections. QPX was detected in 4 of 43 sediment samples but in none of 40 seawater samples.The thraustochytrid called QPX (for quahog parasite unknown) has caused high mortalities in hatchery-reared and wild hard clams (Mercenaria mercenaria, also known as quahogs) from Prince Edward Island (Canada) to Virginia (United States) since the late 1950s (17, 22, 25, 29). In the summer of 2002, QPX infections appeared in the previously healthy Raritan Bay (off the coast of Staten Island in New York) M. mercenaria population, causing significant clam mortality and closure of the fishery (6). Management of hard clam populations affected by QPX disease is hampered by an incomplete understanding of factors controlling the occurrence and severity of QPX infections. Environmental factors, such as salinity and temperature, appear to be important (22), as do clam population density and the planting of seed from nonlocal sources (7). More quantitative information about the occurrence and progression of QPX disease in relation to these and other variables would support better prediction of, and response to, QPX outbreaks. QPX is thought to be an opportunistic pathogen (4, 7, 11), capable of growing outside its host. However, there is very little known about substrates that might support QPX organisms outside of hard clams (4). The abilities to detect and enumerate QPX cells in potential reservoirs would allow the dynamics of the QPX organism in the environment to be related to the occurrence of QPX disease, offering new insight into fundamental questions about the natural transmission mechanisms of the infection.The 18S ribosomal DNA (rDNA) primer pair QPX-F and QPX-R2 can be used in a standard PCR assay to detect the presence of QPX DNA in clam tissue samples (26). Unfortunately, the products are too long (∼650 bp), and often include too much primer dimer, for use in a SYBR green real-time quantitative PCR (qPCR) assay. The low sequence variability in rRNA genes made it difficult to design other primers specific for QPX 18S rDNA. Instead, we used our previously reported rRNA internal transcribed spacer (ITS) region (including ITS1, the 5.8S rRNA gene, and ITS2) sequences for QPX isolates from Massachusetts and New York (20) to develop a qPCR assay targeting the more variable ITS region (1).  相似文献   

2.
Quahog Parasite Unknown (QPX) is a protistan parasite that causes disease and mortality in the hard clam Mercenaria mercenaria. PCR primers and DNA oligonucleotide probes were designed and evaluated for sensitivity and specificity for the QPX organism specifically and for the phylum Labyrinthulomycota in general. The best performing QPX-specific primer pair amplified a 665 bp region of the QPX small-subunit ribosomal DNA (SSU rDNA) and detected as little as 1 fg cloned QPX SSU rDNA and 20 fg QPX genomic DNA. The primers did not amplify DNA of uninfected hard clams M. mercenaria or of the thraustochytrids Schizochytrium aggregatum, Thraustochytrium aureum, and T. striatum. The general labyrinthulomycete primers, which were designed to offer broader specificity than the QPX primers, amplified a 435 bp region of SSU rDNA from QPX, and a 436 to 437 bp region of SSU rDNA from S. aggregatum, T. aureum, and T. striatum, but did not amplify that of the clam M. mercenaria. Field validation of the QPX-specific primer pair, through comparative sampling of 224 clams collected over a 16 mo period from a QPX endemic site in Virginia, USA, indicated that the PCR assay is equivalent to histological diagnosis if initially negative PCR products are reamplified. Oligonucleotide DNA probes specific for QPX and the phylum Labyrinthulomycota were evaluated for in situ hybridization assays of cell smears or paraffin-embedded tissues. Two DNA probes for QPX offered limited sensitivity when used independently; however, when used together as a probe cocktail, sensitivity was greatly enhanced. The probe cocktail hybridized to putative QPX organisms in tissues of hard clams collected from Virginia, New Jersey, Massachusetts and Canada, suggesting that the QPX organisms in these areas are either very closely related or the same species. The QPX probe cocktail did not hybridize with clam tissue or with the thraustochytrids S. aggregatum, T. aureum, and T. striatum. The labyrinthulomycete DNA probe hybridized with QPX and the 3 thraustochytrids, with no background hybridization to clam tissue. SSU rDNA sequences were obtained for the putative QPX organisms from geographically distinct sites. Phylogenetic analyses based on the QPX and Labyrinthulomycota sequences confirmed earlier reports that QPX is a member of this phylum, but could not definitively demonstrate that all of the QPX organisms were the same species.  相似文献   

3.
Quahog Parasite Unknown (QPX) is a significant cause of hard clam Mercenaria mercenaria mortality along the northeast coast of the United States. It infects both wild and cultured clams, often annually in plots that are heavily farmed. Subclinically infected clams can be identified by histological examination of the mantle tissue, but there is currently no method available to monitor the presence of QPX in the environment. Here, we report on a polymerase chain reaction (PCR)-based method that will facilitate the detection of QPX in natural samples and seed clams. With our method, between 10 and 100 QPX cells can be detected in 1 l of water, 1 g of sediment and 100 mg of clam tissue. Denaturing gradient gel electrophoresis (DGGE) is used to establish whether the PCR products are the same as those in the control QPX culture. We used the method to screen 100 seed clams of 15 mm, and found that 10 to 12% of the clams were positive for the presence of the QPX organism. This method represents a reliable and sensitive procedure for screening both environmental samples and potentially contaminated small clams.  相似文献   

4.
5.
6.
Biomass of the protistan parasite QPX (quahaug parasite X) of hard-shell clam Mercenaria mercenaria was enriched from in vitro culture. The nuclear gene encoding the 18S RNA of the small-subunit ribosomal (ssu-rDNA) was recovered using the polymerase chain reaction (PCR) and sequenced. Phylogenetic analysis clearly showed that QPX is a member of phylum Labyrinthulomycota, within which it appears as a specific relative of Thraustochytrium pachydermum. These results confirm the provisional assignment of QPX to the Labyrinthulomycota made previously on the basis of morphological and ultrastructural characters found in some, but not all, geographic isolates.  相似文献   

7.
The thraustochytrid known as QPX (Quahog Parasite Unknown) has sporadically caused disease in the hard clam Mercenaria mercenaria along the east coast of North America since the 1960s. We hypothesized that genetically distinct QPX strains might be responsible for outbreaks of QPX disease in different areas and tested this hypothesis by comparing several QPX isolates recovered from the recent outbreak in Raritan Bay, New York with QPX strains isolated from 2 outbreaks in Massachusetts, USA. There was no variation in small subunit rDNA (SSU rDNA), 5.8S rDNA, or 4 mitochondrial gene sequences. In contrast, both of the ribosomal ribonucleic acid (rRNA) operon intergenic spacers, internal transcribed spacers 1 and 2 (ITS1 and ITS2), revealed substantial sequence variation. However, strain-specific sequences were not detected because the ITS sequence variation within QPX isolates was comparable to the variation between isolates. ITS1 sequences recovered from an infected clam by amplification with a QPX ITS2-specific primer were identical to those recovered from the QPX isolates.  相似文献   

8.
Quahog parasite unknown (QPX) is a protistan microorganism associated with mass mortalities of hard clams (Mercenaria mercenaria) along the northeastern coasts of the United States and maritime Canada. Because several studies indicate modulatory effects of prevailing environmental parameters on disease outbreaks, this study tested the effect of major environmental parameters (temperature, salinity and oxygen concentration; individually or combined) on QPX survival in artificial seawater and parasite growth in culture media in vitro. Three QPX isolates from two different geographic locations were compared. Results indicated that in vitro growth of QPX was optimal in standard culture medium at 34 ppt between 20 °C and 23 °C. Additionally, significant differences in temperature optima were observed for geographically distinct QPX isolates (p < 0.001) confirming previous studies suggesting the existence of different QPX strains (or ecotypes). When tested in seawater, QPX exhibited opposite trends with higher survival at 15 °C and 15 ppt. Results also demonstrated limited survival and growth of QPX under anoxic conditions. Additionally, results showed that the parasite is able to survive extreme temperatures (−12 °C to 32 °C) suggesting that QPX could overcome short periods of extreme conditions in the field. These results contribute to a better understanding of interactions between QPX and its environment, but potential impacts of environmental conditions on QPX disease development need further work as it also involves clam response to these factors.  相似文献   

9.
Single-stranded DNA (ssDNA) intermediates are formed in multiple cellular processes, including DNA replication and recombination. Here, we describe a quantitative polymerase chain reaction (qPCR)-based assay to quantitate ssDNA intermediates, specifically the 3′ ssDNA product of resection at specific DNA double-strand breaks induced by the AsiSI restriction enzyme in human cells. We protect the large mammalian genome from shearing by embedding the cells in low-gelling-point agar during genomic DNA extraction and measure the levels of ssDNA intermediates by qPCR following restriction enzyme digestion. This assay is more quantitative and precise compared with existing immunofluorescence-based methods.  相似文献   

10.
Toxigenic Vibrio cholerae, the etiological agent of cholera, is a natural inhabitant of the marine environment and causes severe diarrheal disease affecting thousands of people each year in developing countries. It is the subject of extensive testing of shrimp produced and exported from these countries. We report the development of a real time PCR (qPCR) assay to detect the gene encoding cholera toxin, ctxA, found in toxigenic V. cholerae strains. This assay was tested against DNA isolated from soil samples collected from diverse locations in the US, a panel of eukaryotic DNA from various sources, and prokaryotic DNA from closely related and unrelated bacterial sources. Only Vibrio strains known to contain ctxA generated a fluorescent signal with the 5' nuclease probe targeting the ctxA gene, thus confirming the specificity of the assay. In addition, the assay was quantitative in pure culture across a six-log dynamic range down to <10 CFU per reaction. To test the robustness of this assay, oysters, aquatic sediments, and seawaters from Mobile Bay, AL, were analyzed by qPCR and traditional culture methods. The assay was applied to overnight alkaline peptone water enrichments of these matrices after boiling the enrichments for 10 min. Toxigenic V. cholerae strains were not detected by either qPCR or conventional methods in the 16 environmental samples examined. A novel exogenous internal amplification control developed by us to prevent false negatives identified the samples that were inhibitory to the PCR. This assay, with the incorporated internal control, provides a highly specific, sensitive, and rapid detection method for the detection of toxigenic strains of V. cholerae.  相似文献   

11.
Quahog parasite unknown (QPX) is a fatal protistan parasite affecting cultured and wild hard clams Mercenaria mercenaria along the northeastern coasts of the USA and maritime Canada. Field investigations and laboratory transmission studies revealed some variations in the susceptibility of different hard clam stocks to QPX infection. In this study, we used in vitro QPX cultures to investigate the effect of plasma and tissue extracts from two different clam stocks on parasite survival and growth. Results demonstrated the presence of factors in clams that significantly modulate QPX growth. Extracts from gills and mantle tissues as well as plasma inhibited in vitro QPX growth, whereas foot and adductor muscle extracts enhanced parasite growth. Investigations of anti-QPX activities in plasma from two clam stocks displaying different susceptibility toward QPX disease in vivo demonstrated higher inhibition of QPX growth by plasma from New York (resistant) clams compared to Florida (susceptible) clams. Some clams appeared to be deficient in inhibitory factors, suggesting that such animals may become more easily infected by the parasite.  相似文献   

12.
Q fever, caused by Coxiella burnetii, is a zoonosis with a worldwide distribution. A large rural area in the southeast of the Netherlands was heavily affected by Q fever between 2007 and 2009. This initiated the development of a robust and internally controlled multiplex quantitative PCR (qPCR) assay for the detection of C. burnetii DNA in veterinary and environmental matrices on suspected Q fever-affected farms. The qPCR detects three C. burnetii targets (icd, com1, and IS1111) and one Bacillus thuringiensis internal control target (cry1b). Bacillus thuringiensis spores were added to samples to control both DNA extraction and PCR amplification. The performance of the qPCR assay was investigated and showed a high efficiency; a limit of detection of 13.0, 10.6, and 10.4 copies per reaction for the targets icd, com1, and IS1111, respectively; and no cross-reactivity with the nontarget organisms tested. Screening for C. burnetii DNA on 29 suspected Q fever-affected farms during the Q fever epidemic in 2008 showed that swabs from dust-accumulating surfaces contained higher levels of C. burnetii DNA than vaginal swabs from goats or sheep. PCR inhibition by coextracted substances was observed in some environmental samples, and 10- or 100-fold dilutions of samples were sufficient to obtain interpretable signals for both the C. burnetii targets and the internal control. The inclusion of an internal control target and three C. burnetii targets in one multiplex qPCR assay showed that complex veterinary and environmental matrices can be screened reliably for the presence of C. burnetii DNA during an outbreak.  相似文献   

13.
Restoration of oyster reef habitat in the Inland Bays of Delaware was accompanied by an effort to detect and determine relative abundance of the bivalve pathogens Perkinsus marinus, Haplosporidium nelsoni, and QPX. Both the oyster Crassostrea virginica and the clam Mercenaria mercenaria were sampled from the bays. In addition, oysters were deployed at eight sites around the bays as sentinels for the three parasites. Perkinsus marinus prevalence was measured with a real-time, quantitative polymerase chain reaction (PCR) methodology that enabled high-throughput detection of as few as 31 copies of the ribosomal non-transcribed spacer region in 500 ng oyster DNA. The other pathogens were assayed using PCR with species-specific primers. Perkinsus marinus was identified in Indian River Bay at moderate prevalence ( approximately 40%) in both an artificial reef and a wild oyster population whereas sentinel oysters were PCR-negative after 3-months exposure during summer and early fall. Haplosporidium nelsoni was restricted to one oyster deployed in Little Assawoman Bay. QPX and P. marinus were not detected among wild clams. While oysters in these bays have historically been under the greatest threat by MSX, it is apparent that P. marinus currently poses a greater threat to recovery of oyster aquaculture in Delaware's Inland Bays.  相似文献   

14.
Environmental stewardship requires timely, accurate information related to the status of a given ecosystem and the species that occupy it. Recent advances in the application of the highly sensitive real-time quantitative polymerase chain reaction (qPCR) towards identification of constituents within environmental DNA (eDNA) now allow targeted detection of the presence of species-specific biological material within a localized geographic region. However, as with all molecular techniques predicated on the specificity and sensitivity of the PCR assay, careful validation of each eDNA qPCR assay in development must be performed both under controlled laboratory conditions and when challenged with field-derived eDNA samples. Such a step-wise approach forms the basis for incorporation of innovative qPCR design features that strengthen the implementation and interpretation of the eDNA assay. This includes empirical determination that the qPCR assay is refractory to the presence of human DNA and the use of a tripartite assay approach comprised of 1) a primer set targeting plant chloroplast that evaluates the presence of amplifiable DNA from field samples to increase confidence in a negative result, 2) an animal group primer set to increase confidence in the assay result, and 3) a species-specific primer set to assess presence of DNA from the target species. To demonstrate this methodology, we generated eDNA assays specific for the North American bullfrog (Lithobates (Rana) catesbeiana) and the Rocky Mountain tailed frog (Ascaphus montanus) and characterized each with respect to detection sensitivity and specificity with demonstrated performance in a field survey scenario. The qPCR design features presented herein address specific challenges of eDNA assays thereby increasing their interpretative power.  相似文献   

15.
Sulfate-reducing bacteria (SRB) pose a serious problem to offshore oil industries by producing sulfide, which is highly reactive, corrosive and toxic. The dissimilatory sulfite reductase ( dsr ) gene encodes for enzyme dissimilatory sulfite reductase and catalyzes the conversion of sulfite to sulfide. Because this gene is required by all sulfate reducers, it is a potential candidate as a functional marker. Denaturing gradient gel electrophoresis fingerprints revealed the presence of considerable genetic diversity in the DNA extracts achieved from production water collected from various oil fields. A quantitative PCR (qPCR) assay was developed for rapid and accurate detection of dsrB in oil field samples. A standard curve was prepared based on a plasmid containing the appropriate dsrB fragment from Desulfomicrobium norvegicum . The quantification range of this assay was six orders of magnitude, from 4.5 × 107 to 4.5 × 102 copies per reaction. The assay was not influenced by the presence of foreign DNA. This assay was tested against several DNA samples isolated from formation water samples collected from geographically diverse locations of India. The results indicate that this qPCR approach can provide valuable information related to the abundance of the bisulfite reductase gene in harsh environmental samples.  相似文献   

16.
On-site investigation of phytoplankton samples is important for rapid detection of harmful algal species and for early warning of harmful algal bloom. Molecular detection method by DNA amplification in a portable insulated isothermal PCR (iiPCR) device provides a simple and rapid detection based on fluorescent probe within an hour of reaction time. The assay was developed for a paralytic shellfish toxin-producing dinoflagellate Alexandrium tamiyavanichii. The assay presents the data as positive or negative on the presence or absence of A. tamiyavanichii cells, with a limit of detection (LOD) at five target cells per reaction. While the assay is incapable to accurately quantify cell density, it exhibits high detection accuracy and strongly correlated with quantitative PCR (qPCR) data. The user repeatability of iiPCR assay was evaluated; the results showed that no significant differences in the assay run by different operators. Field applicability of the assay was further validated by environmental samples. Despite the shortcoming of the assay, the overall performance of the assay to detect cells, its low-cost effectiveness, and portability for on-site detection, iiPCR has proven its potential as an early screening tool for harmful algae monitoring.  相似文献   

17.
The variability of spatial distribution and the determinism of cyanobacterial blooms, as well as their impact at the lake scale, are still not understood, partly due to the lack of long-term climatic and environmental monitoring data. The paucity of these data can be alleviated by the use of proxy data from high-resolution sampling of sediments. Coupling paleolimnological and molecular tools and using biomarkers such as preserved DNA are promising approaches, although they have not been performed often enough so far. In our study, a quantitative PCR (qPCR) technique was applied to enumerate total cyanobacterial and total and toxic Planktothrix communities in preserved DNA derived from sediments of three lakes located in the French Alps (Lake Geneva, Lake Bourget, and Lake Annecy), containing a wide range of cyanobacterial species. Preserved DNA from lake sediments was analyzed to assess its quality, quantity, and integrity, with further application for qPCR. We applied the qPCR assay to enumerate the total cyanobacterial community, and multiplex qPCR assays were applied to quantify total and microcystin-producing Planktothrix populations in a single reaction tube. These methods were optimized, calibrated, and applied to sediment samples, and the specificity and reproducibility of qPCR enumeration were tested. Accurate estimation of potential inhibition within sediment samples was performed to assess the sensitivity of such enumeration by qPCR. Some precautions needed for interpreting qPCR results in the context of paleolimnological approaches are discussed. We concluded that the qPCR assay can be used successfully for the analysis of lake sediments when DNA is well preserved in order to assess the presence and dominance of cyanobacterial and Planktothrix communities.  相似文献   

18.
Quahog Parasite Unknown (QPX) causes disease and mortality in hard clams, Mercenaria mercenaria. Seasonality of QPX disease prevalence in the field and changes in QPX growth and survival in vitro suggest a role of temperature in the hard clam-QPX interaction and disease development. This study specifically examined the effect of temperature on QPX disease development and dynamics. Naturally and experimentally infected clams were separately maintained in the laboratory at 13 °C, 21 °C, or 27 °C for 4 months. Following this initial treatment, temperature was adjusted to 21 °C for 5 additional months to simulate seasonal changes of temperature in the field and to investigate the effect of temperature variations on QPX disease dynamics. Mortality was continuously monitored during the experiment and clams were sampled at 2, 4 and 9 months for the assessment of QPX disease prevalence and intensity using our standard histological and quantitative PCR techniques. Results demonstrated significantly higher QPX disease prevalence and intensity, as well as higher mortality, in naturally-infected clams maintained at 13 °C as compared to those held at 21 °C or 27 °C. Similarly, disease development was significantly higher in experimentally infected clams maintained at the colder temperature (70% prevalence after 4 months) as compared to those maintained under warmer conditions (<10%). Additionally, our results demonstrated an improvement in the condition of clams initially maintained at 13 °C for 4 months after transfer to 21 °C for 5 additional months, with a significant reduction of QPX prevalence (down to 19%). Interestingly, disease development or healing in clams maintained at different temperatures exhibited a strong relationship with clam defense status (jointly submitted paper) and highlighted the impact of temperature on clam activity and QPX disease dynamics. These findings should be taken into account for the timing of activities involving the monitoring, movement (e.g. relays, transplants) or grow out (e.g. commercial culture, municipal enhancement) of hard clams in enzootic areas.  相似文献   

19.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

20.
QPX (Quahog Parasite Unknown) is a protistan parasite affecting hard clams (Mercenaria mercenaria) along the Northeast coast of the United States. The fact that QPX disease epizootics are usually observed in field sites with high salinities led to the general assumption that salinity represents an important factor for disease distribution. This study was designed to investigate the effect of salinity on QPX disease development as well as constitutive and QPX-induced defense factors in M. mercenaria. Naïve and QPX-infected (both experimentally and naturally) clams were submitted to 17 and 30 psu for 4 months. Standard and QPX-specific cellular and humoral defense parameters were assessed after 2 and 4 months. These included total and differential hemocyte counts, reactive oxygen species production, phagocytic activity of hemocytes, lysozyme concentration in plasma, anti-QPX activity in plasma and resistance of hemocytes to cytotoxic QPX extracellular products. Results demonstrated higher QPX-associated mortality in naturally infected clams maintained at high salinity compared to those held at 17 psu. Our findings also showed an increase in mortality following experimental challenge with QPX in clams submitted to 30 psu but not in those held at 17 psu. Constitutive clam defense factors and the response to QPX challenge were also affected by salinity. QPX challenge caused significant but transitory changes in hemolymph parameters that were obvious at 2 months but disappeared at 4 months. Overall, our results show that salinity modulates clam immunity and the progress of QPX disease although its impact appears secondary as compared to findings we reported earlier for temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号