首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.
Escherichia coli strain 5C15 contains a mutation in the cca gene that decreases AMP incorporation by tRNA nucleotidyltransferase while leaving CMP incorporation unaffected. Earlier studies of the purified mutant enzyme suggested that the mutation was localized to the AMP-incorporating site. In order to analyze this mutation in more detail, the cca gene from strain 5C15 was cloned into plasmid pUC8. Analysis of tRNA nucleotidyltransferase activity in extracts of a strain transformed with this plasmid demonstrated an elevated level of CMP incorporation, but low AMP incorporation, as expected from the properties of the original mutant. Sequence analysis of the mutant cca gene revealed only a single G to A point mutation leading to a glycine to aspartic acid substitution at position 70 of the peptide chain. The amino acid change was localized to one of two Gly-X-Gly-X-X-Gly sequences present in the protein. This sequence has been identified previously near the nucleotide-binding domain of various proteins, but it has not been noted in enzymes that incorporate nucleotide residues. However, other sequences often associated with ATP-binding domains are not found in tRNA nucleotidyltransferase. The implications of these findings for our understanding of nucleotide-binding domains are discussed.  相似文献   

2.
From wheat embryos, tRNA nucleotidyltransferase (EC 2.7.7.25) was isolated. By chromatography on Sepharose 6B, DEAE-cellulose and affinity chromatography on tRNA-hydrazyl-Sepharose 4B, 7000-fold purification of the enzyme was achieved. The enzyme required for its activity Mg2+ or Mn2+ ion. ATP inhibited incorporation of CMP from CTP into lupin tRNA, and CTP acted as a competitive inhibitor of AMP incorporation from ATP. The regulatory role of ATP in incorporation of terminal CMP into tRNA is discussed. The incorporation of terminal CMP into tRNA deprived of terminal CCA or CA, was also studied.  相似文献   

3.
The role of tRNA nucleotidyltransferase in Escherichia coli has been uncertain because all tRNA genes studied in this organism already encode the -C-C-A sequence. Examination of a cca mutant, originally thought to contain 1-2% enzyme activity, indicated that it actually produces an inactive fragment of 40 kd compared to 47 kd for the wild-type enzyme due to a nonsense mutation in its cca gene. To confirm that the residual activity in extracts of this strain is due to another enzyme, and that tRNA nucleotidyltransferase is non-essential, we have interrupted the cca gene in vitro, and transferred this mutant gene to a variety of strains. In all cases mutant strains are viable, although as much as 15% of the tRNA population contains defective 3' termini, and no tRNA nucleotidyltransferase is detectable. Mutant strains grow slowly, but can be restored to more normal growth by a relA mutation or by a decrease in RNase T activity. In the latter case the amount of defective tRNA decreases dramatically. These findings indicate that tRNA nucleotidyltransferase is not essential for E. coli viability, and therefore, that all essential tRNA genes in this organism encode the -C-C-A sequence.  相似文献   

4.
2-Thiocytidine 5'-triphosphate, s2CTP, is able to replace CTP as a substrate for tRNA nucleotidyltransferase. s2CMP can be incorporated into both cytidine sites of the C-C-A terminus common to all tRNAs, and in the absence of ATP into at least two additional positions. This was shown by alkylation of the 2-thiocytidine residues with iodo[14C]acetamide, total nucleoside analysis, microgel electrophoresis and analysis of RNase T1 fragments of these tRNAs. The incorporation of the 3'-terminal AMP is not influenced by the additional s2CMP residues at pH 9.0. However, at pH 7.6 the additional s2CMP residues are hydrolysed and AMP can be incorporated into the normal position. Two different tRNAs with terminal 2-thiocytidine alkylated by iodoacetamide inhibit tRNA nucleotidyltransferase. This inhibition is significantly slower if an elongated species is used compared to a tRNA with alkylated 2-thiocytidine in the normal position 75. The addition of 2-mercaptoethanol reactivates the enzyme and leads to a cytidine containing tRNA. This reaction identifies the attacking nucleophile of the enzyme as cysteine residue, which is probably identical to a cysteine residue found in a similar experiment reported previously. The mechanism of the enzymatic and chemical reactions is discussed.  相似文献   

5.
Rabbit liver tRNA nucleotidyltransferase catalyzes the incorporation of AMP and CMP into the model acceptor substrate, cytidine. The apparent Km for cytidine in this reaction is about 80 to 90 mM which is more than 10(4) greater than the Km values for the natural substrates, tRNA lacking the terminal AMP (tRNA-C-C) and tRNA lacking the terminal pCpA (tRNA-C). The Vmax values for the model reaction are only 5% and 2% of those for the reaction with the natural tRNA substrates. Addition of the tRNA fragments, tRNA lacking the terminal XpCpCpA sequence (tRNA-(X - 1)p) and tRNA lacking the terminal CpCpA (tRNA-Xp), greatly stimulates the rate of nucleotide incorporation into cytidine. In the case of CMP incorporation into cytidine, tRNA-Xp stimulates the reaction about 60-fold, to a rate similar to that of the normal reaction with tRNA-C. The tRNA fragment has no effect on the apparent Km of either cytidine or CTP, but only alters the Vmax of the reaction. Stimulation of the model reactions is maximal with tRNA fragments of specific chain lengths. These results provide direct evidence that the nonreacting regions of a substrate molecule play an important role in the catalytic efficiency of an enzyme.  相似文献   

6.
1. Different reaction steps involved in protein synthesis were studied in skeletal muscles from control and myopathic hamsters. 2. There was no difference between partially purified aminoacyl-tRNA synthetases from myopathic and control animals in yield or catalytic activity, as tested with exogenous deacylated tRNA. 3. However, isolated deacylated tRNA from myopathic muscle was aminoacylated by these synthetases to a lesser extent than that derived from control muscle. 4. Addition of deacylated tRNA isolated from control muscle improved the performance of pH5 enzymes from myopathic muscle in polypeptide synthesis on homologous polyribosomes; tRNA isolated from myopathic animals did not. 5. Preparation of extracts from both types of animals in the presence of the ribonuclease-absorbent bentonite led to an increased capacity of endogenous tRNA to accept amino acids in pH5 enzymes prepared from normal and abnormal tissue, but the difference between the two systems remained the same. 6. Total tRNA nucleotidyltransferase activity, tested with twice-pyrophosphorolysed rat liver tRNA, was identical in both extracts. 7. Added tRNA nucleotidyltransferase incorporated more AMP and CMP into endogenous tRNA with the pH5 enzyme from myopathic muscle than with that from control muscle. 8. Preincubation of deacylated tRNA from myopathic muscle with ATP, CTP and tRNA nucleotidyltransferase more than doubled its subsequent aminoacyl-acceptor activity, and halved the extent of the defect relative to aminoacylation of control tRNA similarly treated. Endogenous tRNA in pH5 enzyme preparations behaved likewise. 9. It is suggested that a 3'-exonuclease in myopathic muscles attacks tRNA molecules in such a way that some of them remain substrates for tRNA nucleotidyltransferase, which may incorporate into RNA not only AMP and CMP, but also GMP. 10. Cell-free protein synthesis in preparations from myopathic hamster muscles is limited by the supply of intact tRNA molecules.  相似文献   

7.
When the cytosol of Ehrlich ascites tumor cells was fractionated by chromatofocusing in the pH range of 9 to 6, two active peaks (I and II) of tRNA nucleotidyltransferase were obtained. Fraction I was a multiple complex with a high molecular weight (M.W. greater than 300K) and fraction II comprised components derived from fraction I. Fraction II was separated into tRNA nucleotidyltransferase (M.W., ca. 46,000) and nucleosidediphosphate kinase (M.W., ca. 74,000) by subsequent Sephacryl S-200 chromatography. The two enzymes appeared to be associated loosely with each other. Using the above fraction II or a mixture of the purified tRNA nucleotidyltransferase and nucleosidediphosphate kinase, it was possible to effectively synthesize the 3'-terminal -pCpCpA of tRNA in a reaction mixture containing [3H]-CDP plus XTP or [3H]ADP plus XTP as substrate. Among the XTPs investigated, dTTP was most effective. In addition, it was found that [3H]AMP + XTP also serves as a substrate. [14C]CMP plus XTP, however, was not utilized. From the antagonism of cold CDP against [3H]CTP, and that of cold ADP and AMP against [3H]ATP with the purified tRNA nucleotidyltransferase, the affinity of CDP to the enzyme was estimated to be 1/100 of that of CTP, while the affinities of ADP and AMP to the enzyme were 3 and 30 times higher, respectively, than that of ATP, suggesting that the subsite which binds ATP also binds ADP or AMP. The tRNA nucleotidyltransferase, which had bound ADP or AMP, could not completely synthesize the 3'-terminus of tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Bacteriophage infection of E. coli cells deficient in the enzyme tRNA nucleotidyltransferase (cca mutants) resulted in greatly decreased production of viable progeny phage compared to wild type cells. This decrease amounted to as much as 90% in the case of T-even bacteriophages, and 50-65% for T-odd bacteriophages. However, infection by the RNA phages, Qbeta and f2, was unaffected by the cca mutation. Examination of T4 infection of cca hosts indicated that phage development proceeded normally, that near-normal numbers of progeny particles were formed, but that most of these particles were non-viable. Possible functions for E. coli tRNA nucleotidyltransferase during bacteriophage infection are discussed.  相似文献   

9.
The pyrophosphorolysis of tRNA by yeast CTP-(ATP):tRNA nucleotidyltransferase has been studied in an effort to define the behavior of the enzyme and the experimental parameters that lead to net loss of the 3'-terminal nucleotide or to nucleotide exchange. It was found that removal of AMP from the terminus of tRNA proceeded optimally at 1.0 mM PPi; incorporation of 2'- or 3'-dAMP was also studied and shown to proceed optimally at a 6.0 mM concentration of deoxynucleoside triphosphate. CTP was shown to inhibit the pyrophosphorolysis and nucleotide exchange observed when starting from intact tRNA, but apparently not by inhibiting removal of CMP from tRNA missing the 3'-terminal adenosine moiety. The optimized conditions for nucleotide exchange were used for the preparative conversion of tRNAs to species terminating in 2'- and 3'-deoxyadenosine.  相似文献   

10.
We report that the temperature-sensitive (ts) phenotype in Saccharomyces cerevisiae associated with a variant tRNA nucleotidyltransferase containing an amino acid substitution at position 189 results from a reduced ability to incorporate AMP and CMP into tRNAs. We show that this defect can be compensated for by a second-site suppressor converting residue arginine 64 to tryptophan. The R64W substitution does not alter the structure or thermal stability of the enzyme dramatically but restores catalytic activity in vitro and suppresses the ts phenotype in vivo. R64 is found in motif A known to be involved in catalysis and nucleotide triphosphate binding while E189 lies within motif C previously thought only to connect the head and neck domains of the protein. Although mutagenesis experiments indicate that residues R64 and E189 do not interact directly, our data suggest a critical role for residue E189 in enzyme structure and function. Both R64 and E189 may contribute to the organization of the catalytic domain of the enzyme. These results, along with overexpression and deletion analyses, show that the ts phenotype of cca1-E189F does not arise from thermal instability of the variant tRNA nucleotidyltransferase but instead from the inability of a partially active enzyme to support growth only at higher temperatures.  相似文献   

11.
Besides the main reactions leading to the repair of tRNA molecules deprived of part or all of their 3′ terminal -pCpCpA sequence, purified E. coli tRNA nucleotidyltransferase catalyzes in vitro, under certain conditions the synthesis of sequences not found in natural tRNAs. In the absence of CTP, AMP is incorporated directly into tRNA-pX or tRNA-pXpC leading to tRNA-pXpA or tRNA-pXpCpA respectively. In the absence of ATP one extra CMP is added to tRNA-pXpCpC to form tRNA-pXpCpCpC. UMP can be incorporated instead of CMP and the sequence -pXpU and -pXpCpU formed. The incorporation of UMP cannot be followed by the incorporation of either a second UMP or an AMP. In all cases, the rate of misincorporation is lower than the rate of the synthesis of the normal sequence.The apparent KM of the enzyme for UTP is 3.0 10−4 M. CTP inhibits competitively the incorporation of UMP into tRNA-pX with a Ki value (1.6 10−5 M) close to its apparent KM.  相似文献   

12.
Rabbit liver tRNA nucleotidyltransferase was used to synthesize modified tRNA molecules containing an additional CMP residue at the 3′ terminus. In the first step tRNA-C-C was converted to tRNA-C-C-C by a minor activity of the purified enzyme. In the second step the lengthened molecules were converted to tRNA-C-C-C-A. AMP addition to tRNA-C-C-C occurred at about 50% the rate with tRNA-C-C. Aminoacylation studies indicated that tRNA-C-C-C-A was active for acceptance of at least 12 amino acids.  相似文献   

13.
ATP (CTP):tRNA nucleotidyltransferase (EC 2.7.7.25) was purified to apparent homogeneity from a crude extract of Lupinus albus seeds. Purification was accomplised using a multistep protocol including ammonium sulfate fractionation and chromatography on anion-exchange, hydroxylapatite and affinity columns. The lupin enzyme exhibited a pH optimum and salt and ion requirements that were similar to those of tRNA nucleotidyltransferases from other sources. Oligonucleotides, based on partial amino acid sequence of the purified protein, were used to isolate the corresponding cDNA. The cDNA potentially encodes a protein of 560 amino acids with a predicted molecular mass of 64164 Da in good agreement with the apparent molecular mass of the pure protein determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The size and predicted amino acid sequence of the lupin enzyme are more similar to the enzyme from yeast than from Escherichia coli with some blocks of amino acid sequence conserved among all three enzymes. Functionality of the lupin cDNA was shown by complementation of a temperature-sensitive mutation in the yeast tRNA nucleotidyltransferase gene. While the lupin cDNA compensated for the nucleocytoplasmic defect in the yeast mutant it did not enable the mutant strain to grow at the non-permissive temperature on a non-fermentable carbon source.  相似文献   

14.
The correlation between the in vivo functioning and the in vitro behavior of the thermolabile alanyl-transfer ribonucleic acid (tRNA) synthetase (ARS) of Escherichia coli strain BM113 is presented. As a measure for the ARS activity inside the cell, the amount of acylated tRNA(ala) in vivo was determined. The rapid drop of the per cent tRNA(ala) charged which was observed upon shifting a culture of BM113 to the nonpermissive temperature indicates that in vivo acylation of tRNA(ala) might be the growth-limiting step at high temperature. Since neither growth nor the in vivo charging level of tRNA(ala) was affected by the addition of high l-alanine concentrations to the medium, one may infer that impaired functioning of the mutant enzyme at 40 C seems not to be due to reduced affinity of the enzyme for the amino acid. Separation of bulk tRNA of E. coli and of yeast on benzoylated diethylaminoethyl cellulose and charging of the fractions of the column by wild-type and mutant ARS reveal that only those tRNA species aminoacylated by the wild-type enzyme are also charged by the mutant ARS. Determination of the K(m) values of wild-type and mutant ARS for the three isoaccepting tRNA(ala) species of E. coli shows a ca. 10-fold increase of the apparent K(m) values of the mutant enzyme for all three species. Thus, the mutation proportionally reduces the apparent affinity for tRNA(ala) without causing any detectable recognition errors. Investigation of heat inactivation kinetics of wild-type and mutant ARS without and in the presence of substrates provides further evidence that only the transfer site of the ARS is altered by the mutation. Moreover, whereas both enzymes possess the same pH optimum of the relative maximal velocity, their pH dependence of the K(m) values for tRNA is different. The K(m) of the wild-type enzyme decreases at pH values below 7.0 and that of the mutant enzyme shows the inverse tendency; this again indicates an alteration of the tRNA binding site.  相似文献   

15.
To determine the function of the enzyme transfer ribonucleic acid (tRNA) nucleotidyltransferase in vivo, five mutants of Escherichia coli containing low levels of this enzyme were isolated. Since no selection procedure for such mutants existed, these strains were isolated by assay of large numbers of colonies from a heavily mutagenized stock. A procedure employing cells made permeable to tRNA and ATP was used to screen the large number of colonies required for the isolation. All the mutants contained less than 20% of the normal level of the AMP-incorporating activity of tRNA nucleotidyltransferase in extracts prepared by several methods, and the best mutant contained only about 2% of this activity. Three of the mutants also had equally low levels of the cytidine 5'-monophosphate-incorporating activity of the enzyme. Despite these low activities, the mutant strains displayed relatively normal growth characteristics at all temperatures examined. The enzyme in the mutant strains was not temperature sensitive, nor were any other abnormal biochemical properties detected. tRNA isolated from the mutant strains was missing significant amounts of its 3' terminal adenosine 5'-monophosphate residue, amounting to 10 to 15% in the best mutant. However, only small amounts of the terminal cytidine 5'-monophosphate residue were missing. The results indicate that tRNA nucleotidyltransferase is involved in some aspect of synthesis or repair of the 3' terminus of tRNA, and that the enzyme is present in large excess over its requirements for this function.  相似文献   

16.
In the divE mutant, which has a temperature-sensitive mutation in the tRNA1(Ser) gene, the synthesis of beta-galactosidase is dramatically decreased at the non-permissive temperature. In Escherichia coli, the UCA codon is only recognized by tRNA1(Ser). Several genes containing UCA codons are normally expressed at 42 degrees C in the divE mutant. Therefore, it is unlikely that the defect is due to the general translational deficiency of the mutant tRNA1(Ser). In this study, we constructed mutant lacZ genes, in which one or several UCA codons at eight positions were replaced with other serine codons such as UCU or UCC, and we examined the expression of these mutant genes in the divE mutant. We found that a single UCA codon at position 6 or 462 was sufficient to cause the same level of reduced beta-galactosidase synthesis as that of the wild-type lacZ gene, and that the defect in beta-galactosidase synthesis was accompanied by a low level of lacZ mRNA. It was also found that introduction of an rne-1 pnp-7 double mutation restored the expression of mutant lacZ genes with only UCA codons at position 6 or 462. A polarity suppressor mutation in the rho gene had no effect on the defect in lacZ gene expression in the divE mutant. We propose a model to explain these results.  相似文献   

17.
18.
Selenium is a constituent in Escherichia coli of the anaerobic enzyme formate dehydrogenase in the form of selenocysteine. Selenium is also present in the tRNA of E. coli in the modified base 5-methylaminomethyl-2-selenouracil (mnm5Se2U). The pathways of bacterial selenium metabolism are largely uncharacterized, and it is unclear whether nonspecific reactions in the sulfur metabolic pathways may be involved. We demonstrated that sulfur metabolic pathway mutants retain a wild-type pattern of selenium incorporation, indicating that selenite (SeO32-) is metabolized entirely via selenium-specific pathways. To investigate the function of mnm5Se2U, we isolated a mutant which is unable to incorporate selenium into tRNA. This strain was obtained by isolating mutants lacking formate dehydrogenase activity and then screening for the inability to metabolize selenium. This phenotype is the result of a recessive mutation which appears to map in the general region of 21 min on the Salmonella typhimurium chromosome. A mutation in this gene, selA, thus has a pleiotropic effect of eliminating selenium incorporation into both protein and tRNA. The selA mutant appears to be blocked in a step of selenium metabolism after reduction, such as in the actual selenium insertion process. We showed that the absence of selenium incorporation into suppressor tRNA reduces the efficiency of suppression of nonsense codons in certain contexts and when wobble base pairing is required. Thus, one function of mnm5Se2U in tRNA may be in codon-anticodon interactions.  相似文献   

19.
The Escherichia coli argU10(Ts) mutation in the argU gene, encoding the minor tRNA(Arg) species for the rare codons AGA and AGG, causes pleiotropic defects, including growth inhibition at high temperatures, as well as the Pin phenotype at 30 degrees C. In the present study, we first showed that the codon selectivity and the arginine-accepting activity of the argU tRNA are both essential for complementing the temperature-sensitive growth, indicating that this defect is caused at the level of translation. An in vitro analysis of the effects of the argU10(Ts) mutation on tRNA functions revealed that the affinity with elongation factor Tu-GTP of the argU10(Ts) mutant tRNA is impaired at 30 and 43 degrees C, and this defect is more serious at the higher temperature. The arginine acceptance is also impaired significantly but to similar extents at the two temperatures. An in vivo analysis of aminoacylation levels showed that 30% of the argU10(Ts) tRNA molecules in the mutant cells are actually deacylated at 30 degrees C, while most of the argU tRNA molecules in the wild-type cells are aminoacylated. Furthermore, the cellular level of this mutant tRNA is one-tenth that of the wild-type argU tRNA. At 43 degrees C, the cellular level of the argU10(Ts) tRNA is further reduced to a trace amount, while neither the cellular abundance nor the aminoacylation level of the wild-type argU tRNA changes. We concluded that the phenotypic properties of the argU10(Ts) mutant result from these reduced intracellular levels of the tRNA, which are probably caused by the defective interactions with elongation factor Tu and arginyl-tRNA synthetase.  相似文献   

20.
A mutation in the pheS gene, encoding phenylalanyl-tRNA synthetase, in E. coli NP37 confers temperature-sensitivity on the organism. A five-fold increase in tRNA(phe) levels complements the mutation. Analysis of the kinetic properties of the mutant enzyme indicates that the KM is 20-fold higher than the wild-type and the dissociation constant of the tRNA(phe)-synthetase complex for the mutant is at least 10-fold higher. These results indicate that the mutation in E. coli NP37 directly affects the tRNA(phe) binding site on the cognate synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号