首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, it was demonstrated, by using agar diffusion tests and a Transwell system, that Burkholderia multivorans NKI379 has an antagonistic effect against the growth of B. pseudomallei. Bacterial representatives were isolated from agricultural crop soil and mixed to construct a partial bacterial community structure that was based on the results of reproducible patterns following PCR-denaturing gradient gel electrophoresis analysis of total soil chromosomes. The antagonistic effect of B. multivorans on B. pseudomallei was observed in this imitate community. In a field study of agricultural crop soil, the presence of B. pseudomallei was inversely related to the presence of the antagonistic strains B. multivorans or B. cenocepacia. B. multivorans NKI379 can survive in a broader range of pH, temperatures and salt concentrations than B. pseudomallei, suggesting that B. multivorans can adapt to extreme environmental changes and therefore predominates over B. pseudomallei in natural environments.  相似文献   

2.
Burkholderia pseudomallei, a Gram-negative bacterium that causes melioidosis may be differentiated from closely related species of Burkholderia mallei that causes glanders and non-pathogenic species of Burkholderia thailandensis by multiplex PCR. The multiplex PCR consists of primers that flank a 10-bp repetitive element in B. pseudomallei and B. mallei amplifying PCR fragment of varying sizes between 400-700 bp, a unique sequence in B. thailandensis amplifying a PCR fragment of 308 bp and the metalloprotease gene amplifying a PCR fragment of 245 bp in B. pseudomallei and B. thailandensis. The multiplex PCR not only can differentiate the three Burkholderia species but can also be used for epidemiological typing of B. pseudomallei and B. mallei strains.  相似文献   

3.
Burkholderia pseudomallei, the etiological agent of melioidosis, is an animal pathogen capable of inducing a highly fatal septicemia. B. pseudomallei possesses three type III secretion system (TTSS) clusters, two of which (TTSS1 and TTSS2) are homologous to the TTSS of the plant pathogen Ralstonia solanacearum, and one (TTSS3) is homologous to the Salmonella SPI-1 mammalian pathogenicity island. We have demonstrated that TTSS3 is required for the full virulence of B. pseudomallei in a hamster model of infection. We have also examined the virulence of B. pseudomallei mutants deficient in several putative TTSS3 effector molecules, and found no significant attenuation of B. pseudomallei virulence in the hamster model.  相似文献   

4.
Burkholderia pseudomallei is a free-living organism that causes the potentially lethal tropical infection melioidosis. The disease is endemic in many parts of eastern Asia and northern Australia. The presence of two distinct biotypes in soil can be reliably distinguished by their ability to assimilate l -arabinose. Whereas some soil isolates could utilize this substrate (Ara+), the remaining soil isolates and all clinical isolates tested so far could not (Ara?). Only the Ara? isolates were virulent in animal models. We have raised a murine monoclonal antibody (MAb) that can readily distinguish Ara? from Ara+ biotypes. The MAb reacted with a high molecular weight component present only on the Ara? biotype. With this MAb, clinical and soil Ara?isolates gave identical positive reactions in agglutination, immunofluorescence, ELISA and immunoblot assays. Using these same assay systems, the soil Ara+ biotype did not react with the MAb. Similar but distinct immunoblot patterns were also noted when these two Ara biotypes were probed with sera from patients with melioidosis or with polyclonal immune rabbit sera. These data showed that the Ara? biotype from both clinical and environmental isolates is antigenically different from its Ara+ environmental counterpart. The SDS-PAGE protein and lectin-binding profiles of both groups of Ara? isolates were also found to be different from those of the Ara+ biotype.  相似文献   

5.
Burkholderia pseudomallei and B. mallei are the causative agents of melioidosis and glanders, respectively. As iron regulation of gene expression is common in bacteria, in the present studies, we have used microarray analysis to examine the effects of growth in different iron concentrations on the regulation of gene expression in B. pseudomallei and B. mallei. Gene expression profiles for these two bacterial species were similar under high and low iron growth conditions irrespective of growth phase. Growth in low iron led to reduced expression of genes encoding most respiratory metabolic systems and proteins of putative function, such as NADH-dehydrogenases, cytochrome oxidases, and ATP-synthases. In contrast, genes encoding siderophore-mediated iron transport, heme-hemin receptors, and a variety of metabolic enzymes for alternative metabolism were induced under low iron conditions. The overall gene expression profiles suggest that B. pseudomallei and B. mallei are able to adapt to the iron-restricted conditions in the host environment by up-regulating an iron-acquisition system and by using alternative metabolic pathways for energy production. The observations relative to the induction of specific metabolic enzymes during bacterial growth under low iron conditions warrants further experimentation.  相似文献   

6.
Burkholderia pseudomallei DT is unusual as it exhibits six distinct colony morphotypes. Types III and V show stronger motility, whereas type VI exhibits the highest levels of bacterial association with peritoneal exudate cells. Although the bacterial loads in the organs are not significantly different for infections by the six distinct morphotypes, higher mortality (100% and 89%, respectively) and larger areas of abnormal liver debris (20.6% and 22.4%, respectively) are found with types I- and III-infected mice compared to the others. These morphotypes sometimes undergo switching to a mucoid type in the body of mice, but the reverse has never been observed.  相似文献   

7.
类鼻疽是由类鼻疽伯克霍尔德菌(Burkholderia pseudomallei,B. pseudomallei)(简称类鼻疽菌)感染引起的一种热带医学疾病。该病临床表现复杂多样,严重感染时可快速发展为败血症,病死率高达40%。越来越多的证据表明,它是一种正在扩散的人兽共患传染病。本文就近年来关于类鼻疽菌感染的重要毒力因子以及其在免疫逃逸中的作用机制研究进展进行总结,以期了解类鼻疽菌的致病机制,为将来有效疫苗和治疗药物的研发提供理论指导。  相似文献   

8.
【【背景】类鼻疽杆菌是一种能够引起人类疾病甚至死亡的胞内寄生菌,Ⅲ型分泌系统在该菌入侵上皮细胞、逃避宿主免疫以及毒力因子的分泌过程中发挥重要作用,其中bopA基因为TTSS-3基因编码的重要效应蛋白,在类鼻疽杆菌的免疫逃逸中发挥重要作用。【目的】构建类鼻疽杆菌bopA基因敲除菌株,并对其生物学特征进行初步研究。【方法】构建pK18mobSacB-ΔbopA自杀质粒,通过大肠杆菌S17-1λpair以接合的方式转入类鼻疽杆菌,利用同源重组敲除了bopA基因,并用蔗糖平板筛选出菌株,最后在细胞和动物水平检测敲除菌株的表型变化。【结果】构建了bopA敲除的类鼻疽菌株,并通过细胞和动物实验证实敲除bopA基因后,细菌的细胞侵袭和胞内存活以及体内定殖能力都显著降低。【结论】利用同源重组成功构建类鼻疽bopA基因敲除株,为深入研究该基因的作用靶点奠定了实验基础。  相似文献   

9.
Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l?1, while the minimum biofilm elimination concentration (MBEC) was 780–3,120 mg l?1. Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.  相似文献   

10.
11.
Burkoldheria pseudomallei is a Gram-negative bacterium that possesses a protein secretion system similar to those found in Salmonella and Shigella. Recent work has indicated that the protein encoded by the BipD gene of B. pseudomallei is an important secreted virulence factor. BipD is similar in sequence to IpaD from Shigella and SipD from Salmonella and is therefore likely to be a translocator protein in the type-III secretion system of B. pseudomallei. The crystal structure of BipD has been solved at a resolution of 2.1 A revealing the detailed tertiary fold of the molecule. The overall structure is appreciably extended and consists of a bundle of antiparallel alpha-helical segments with two small beta-sheet regions. The longest helices of the molecule form a four-helix bundle and most of the remaining secondary structure elements (three helices and two three-stranded beta-sheets) are formed by the region linking the last two helices of the four-helix bundle. The structure suggests that the biologically active form of the molecule may be a dimer formed by contacts involving the C-terminal alpha-helix, which is the most strongly conserved part of the protein. Comparison of the structure of BipD with immunological and other data for IpaD indicates that the C-terminal alpha-helix is also involved in contacts with other proteins that form the translocon.  相似文献   

12.
13.
Many gram-negative bacteria that are important human pathogens possess type III secretion systems as part of their required virulence factor repertoire. During the establishment of infection, these pathogens coordinately assemble greater than 20 different proteins into a macromolecular structure that spans the bacterial inner and outer membranes and, in many respects, resembles and functions like a syringe. This type III secretion apparatus (TTSA) is used to inject proteins into a host cell's membrane and cytoplasm to subvert normal cellular processes. The external portion of the TTSA is a needle that is composed of a single type of protein that is polymerized in a helical fashion to form an elongated tube with a central channel of 2-3 nm in diameter. TTSA needle proteins from a variety of bacterial pathogens share sequence conservation; however, no atomic structure for any TTSA needle protein is yet available. Here, we report the structure of a TTSA needle protein called BsaL from Burkholderia pseudomallei determined by nuclear magnetic resonance (NMR) spectroscopy. The central part of the protein assumes a helix-turn-helix core domain with two well-defined alpha-helices that are joined by an ordered, four-residue linker. This forms a two-helix bundle that is stabilized by interhelix hydrophobic contacts. Residues that flank this presumably exposed core region are not completely disordered, but adopt a partial helical conformation. The atomic structure of BsaL and its sequence homology with other TTSA needle proteins suggest potentially unique structural dynamics that could be linked with a universal mechanism for control of type III secretion in diverse gram-negative bacterial pathogens.  相似文献   

14.
Rhizobia are Gram-negative bacteria than can elicit the formation of specialized organs, called root nodules, on leguminous host plants. Upon infection of the nodules, they differentiate into nitrogen-fixing bacteroids. An elaborate signal exchange precedes the symbiotic interaction. In general, both rhizobia and host plants exhibit narrow specificity. Rhizobial factors contributing to this specificity include Nod factors and surface polysaccharides. It is becoming increasingly clear that protein secretion is important in determining the outcome of the interaction as well. This paper discusses our current understanding of the symbiotic role played by rhizobial secreted proteins, transported both by secretion systems that are of general use, such as the type I secretion system, and by specialized, host-targeting secretion systems, such as the type III, type IV and type VI secretion systems.  相似文献   

15.
16.
Zhang Q  Chen G  Liu X  Qian Q 《Cell research》2007,17(2):89-99
Antibodies as therapeutic agents are mostly used in oncology,as illustrated by their applications in lymphoma,breastcancer or colorectal cancer.This review provides a brief historical sketch of the development of monoclonal antibodiesfor cancer treatment and Summarizes the most significant clinical data for the best-established reagents to date.It alsodiscusses strategies to improve the anti-rumor efficacy of antibody therapy,including antibody gene therapy and exploi-tation of bone marrow derived primary mesenchymal stem cells as the antibody gene transporter.  相似文献   

17.
The type III secretion system (TTSS) is a specialized supramolecular injectisome composed of 25 or more proteins which form basal and extracellular domains and share gross architectural similarities with bacterial flagella. The extracellular component of the "needle complex" is primarily composed of a single monomeric subunit organized in a helical array surrounding a hollow pore and protrudes from the bacterial membrane. It is through this surface appendage that virulence factors are translocated to the host cell cytoplasm and thereby subvert normal host cell functions. We present here a comprehensive biophysical analysis of the dynamic conformational behavior of the truncated monomeric needle subunit proteins MxiH(Delta5) (Shigella flexneri), BsaL(Delta5) (Burkholderia pseudomallei), and PrgI(Delta5) (Salmonella typhimurium) as well as their thermal stability over a pH range of 3-8. Circular dichroism spectroscopy indicates the secondary structure is largely alpha helical in all three proteins, and surprisingly thermally labile with transition midpoints in the range of 35-50 degrees C over the pH range of 3-8. Additionally, at the concentrations examined, the very broad thermal transitions were >90% reversible. Second derivative UV absorbance spectroscopy data indicates some disruption of the protein's tertiary structure occurs at temperatures in the range of 29-46 degrees C. The difference in the pH of maximal stability for each of the proteins and the variation for each protein with respect to both secondary and tertiary structural elements is striking. It appears, that at physiological temperatures all three proteins experience intermediate non-native molten globule like states in which they display significant secondary structure in the absence of extensive tertiary interactions. Because of the size difference between the inner pore of the needle and the fully folded needle proteins, it seems clear that the needle subunits must be secreted in a partially or completely unfolded state to reach the distal tip of the needle for assembly. It is proposed that the formation of these intermediate states in the physiological temperature range may play a role in passage through the pore and needle assembly.  相似文献   

18.
19.
B. pertussis is a causative agent of whooping cough (pertussis) in humans. Despite wide-scale vaccination in many countries, there is serious concern about pertussis as a re-emerging disease. Re-emergence of pertussis may be explained by several factors: the short duration of protection by the currently available acellular pertussis vaccine, an increase in asymptomatic adult carriers and expansion of strains with certain antigenic variations which are not covered by currently available vaccines. To develop safer and more efficacious vaccines which confer more prolonged protection, researchers are focusing on identification and characterization of new virulence factors. One candidate for protective antigens is the type III secretion system and its secreted proteins.  相似文献   

20.
Melioidosis is caused by the facultative intracellular bacterium, Burkholderia pseudomallei. Using C57BL/6 mice, we investigated the role of macrophages, TNF-alpha, TNF receptor-1 (TNFR1) and TNF receptor-2 (TNFR2) in host defense against B. pseudomallei using an experimental model of melioidosis. This study has demonstrated that in vivo depletion of macrophages renders C57BL/6 mice highly susceptible to intranasal infection with B. pseudomallei, with significant mortality occurring within 5 days of infection. Using knockout mice, we have also shown that TNF-alpha and both TNFR1 and TNFR2 are required for optimal control of B. pseudomallei infection. Compared with control mice, increased bacterial loads were demonstrated in spleen and liver of knockout mice at day 2 postinfection, correlating with increased inflammatory infiltrates comprised predominantly of neutrophils and widespread necrosis. Following infection with B. pseudomallei, mortality rates of 85.7%, 70% and 91.7% were observed for mice deficient in TNF-alpha, TNFR1 and TNFR2, respectively. Comparison of survival, bacterial loads and histology indicate that macrophages, TNF-alpha, TNFR1 or TNFR2 play a role in controlling rapid dissemination of B. pseudomallei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号