首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Transport of iron(III) hydroxamates across the inner membrane into the cytoplasm ofEscherichia coli is mediated by the FhuC, FhuD and FhuB proteins and displays characteristics typical of a periplasmic-binding-protein-dependent transport mechanism. In contrast to the highly specific receptor proteins in the outer membrane, at least six different siderophores of the hydroxamate type and the antibiotic albomycin are accepted as substrates. AfhuB mutant (deficient in transport of substrates across the inner membrane) which overproduced the periplasmic FhuD 30-kDa protein, bound [55Fe] iron(III) ferrichrome. Resistance of FhuD to proteinase K in the presence of ferrichrome, aerobactin, and coprogen indicated binding of these substrates to FhuD. FhuD displays significant similarity to the periplasmic FecB, FepB, and BtuE proteins. The extremely hydrophobic FhuB 70-kDa protein is located in the cytoplasmic membrane and consists of two apparently duplicated halves. The N-and C-terminal halves [FhuB(N) and FhuB(C)] were expressed separately infhuB mutants. Only combinations of FhuB(N) and FhuB(C) polypeptides restored sensitivity to albomycin and growth on iron hydroxamate as a sole iron source, indicating that both halves of FhuB were essential for substrate translocation and that they combined to form an active permease. In addition, a FhuB derivative with a large internal duplication of 271 amino acids was found to be transport-active, indicating that the extra portion did not disturb proper insertion of the active FhuB segments into the cytoplasmic membrane. A region of considerable similarity, present twice in FhuB, was identified near the C-terminus of 20 analyzed hydrophobic proteins of periplasmic-binding-protein-dependent systems. The FhuC 30 kDa protein, most likely involved in ATP binding, contains two domains representing consensus sequences among all peripheral cytoplasmic membrane proteins of these systems. Amino acid replacements in domain I (LysGlu and Gln) and domain II (AspAsn and Glu) resulted in a transport-deficient phenotype.  相似文献   

2.
Under iron-deficient conditions a high-affinity siderophore-mediated iron-transport system is induced in the green alga Scenedesmus incrassatulus R-83. Algal siderophores have a strong avidity for ferric versus ferrous iron, quickly oxidate FeII and efficiently solubilize FeIII hydroxides. The entire ferrated molecule is translocated across the membrane by the specific transport system. The iron-uptake rate in Fe-deficient cells is higher at higher pH adjusted with bicarbonate in the medium, suggesting the presence of an inducible membrane-bound translocator. The iron-reduction step is not involved in uptake of ferrated siderophores. The total absorbed iron from siderophores is high and does not strongly depend on the nutritional status of cells, showing that the critical step for iron uptake is siderophore secretion rather than the membrane-bound iron-transport system.Abbreviations DFOB desferrioxamine B - EDDHA ethylenediamine di (o-hydroxyphenyl) acetic acid - BPDS bathophenanthrolinedisulphonate This work was supported by grant No. B-69 from the National Fund for Scientific Investigations at the Ministery of Education and Science in Bulgaria.  相似文献   

3.
Summary Iron deprivation ofErwinia herbicola (Enterobacter agglomerans) induces the biosynthesis of six high-M r outer-membrane proteins and large amounts of ferrioxamine E. Mutagenesis withN-methyl-N-nitro-N-nitrosoguanidine and selection with ferrimycin A yielded mutants ofE. herbicola K4 (wild type), defective in the expression of a 76-kDa outer-membrane protein, as determined by SDS/polyacrylamide gel electrophoresis. While in bioassays wild-type cells showed growth promotion in the presence of ferrioxamines (B, D1, D2, E, G), enterobactin, citrate, ferrichrome and coprogen, these mutants failed to respond to ferrioxamines. Moreover, experiments with55Fe-labelled siderophores confirmed that iron transport mediated by ferrioxamine E and B in the mutants was completely inhibited, whereas iron transport by other hydroxamate siderophores, such as ferrichrome and coprogen was unaffected. The results are evidence that the 76-kDa protein in the outer membrane represents the receptor protein (FoxA) for ferrioxamines inE. herbicola.  相似文献   

4.
The effects of iron limitation on growth, the composition and function of the respiratory chains, and gallium uptake inEscherichia coli have been studied. Decreasing the iron concentration in a defined medium using Chelex resin gave lower growth yields in both continuous culture and prolonged batch culture. In the former, ironlimited (entering [Fe]2.0 M) cells exhibited diminished respiration rates, respiration-driven proton translocation quotients, and levels of non-haem iron and cytochromes. The cellular concentration of haemoproteinb-590 (a cytochromea 1-like hydroperoxidase) decreased 20-fold on iron limitation, whilst a CO-binding pigment with an absorption maximum in the dithionite-treated form near 500 nm appeared. Gallium(III) (9 M) added to iron-limited, but not iron-sufficient, cultures diminished growth yields further; cells grown with low entering concentrations of iron took up less gallium than iron-sufficient cells. These results are attributed to the interference by gallium(III) with siderophore-mediated metal uptake. Gallium also stimulated iron uptake and was itself accumulated by iron-sufficient cells, suggesting that gallium(III) also affects the iron transport system(s) of low affinity.  相似文献   

5.
Several derivatives of the coprogen and ferrichrysin classes of siderophores were synthesized as potential affinity labels of the iron uptake system inNeurospora crassa. While only one of these compounds has proved useful as an affinity label, all were recognized and transported byNeurospora crassa. One derivative, chloroacetyl-ferrichrysin, proved to be an unexpectedly potent reversible inhibitor (K 1=0.4 M) of both ferrichrysin and coprogen uptake, similar to the natural siderophore, ferrirubin. The reported results provide further understanding of the steric and electronic requirements of siderophores for the iron uptake system inNeurospora crassa.Abbreviations amu atomic mass units - DMF dimethylformamide - FAB tast atom bombardment - NMR nuclear magnetic resonance - ppm parts per million - tlc thin layer chromatography  相似文献   

6.
Henia Mor  Isaac Barash 《Biometals》1990,2(4):209-213
Summary Geotrichum candidum is capable of utilizing iron from hydroxamate siderophores of different structural classes. The relative rates of iron transport for ferrichrome, ferrichrysin, ferrioxamine B, fusigen, ferrichrome A, rhodotorulic acid, coprogen B, dimerium acid and ferrirhodin were 100%, 98%, 74%, 59%, 49%, 35%, 24%, 12% and 11% respectively. Ferrichrome, ferrichrysine and ferrichrome A inhibited [59Fe]ferrioxamine-B-mediated iron transport by 71%, 68% and 28% respectively when added at equimolar concentrations to the radioactive complex. The inhibitory mechanism of [59Fe]ferrioxamine B uptake by ferrichrome was non-competitive (K i 2.4 M), suggesting that the two siderophores do not share a common transport system. Uptake of [59Fe]ferrichrome, [59Fe]rhodotorulic acid and [59Fe]fusigen was unaffected by competition with the other two siderophores or with ferrioxamine B. Thus,G. candidum may possess independent transport systems for siderophores of different structural classes. The uptake rates of [14C]ferrioxamine B and67Ga-desferrioxamine B were 30% and 60% respectively, as compared to [59Fe]ferrioxamine B. The specific ferrous chelates, dipyridyl and ferrozine at 6 mM, caused 65% and 35% inhibition of [59Fe]ferrioxamine uptake. From these results we conclude that, although about 70% of the iron is apparently removed from the complex by reduction prior to being transported across the cellular membrane, a significant portion of the chelated ligand may enter the cell intact. The former and latter mechanisms seem not to be mutually exclusive.  相似文献   

7.
Roots of Plantago lanceolata L. showed an iron stress-induced increase in the rates of electron transport to the extracytoplasmatic acceptors FeEDTA and ferricyanide. No significant changes in the reduction of hexachloroiridate were observed with respect to the iron-nutritional status of the plants. The reduction activity of iron-deficient roots was inhibited by the translation inhibitor cycloheximide (CHM) and the amino acid analog p-fluorophenylalanine (FPA). In both cases, the reduction of FeEDTA and ferricyanide was affected to a different extent, providing evidence for enzyme heterogeneity. Resupply of FeEDTA to iron-deficient plants resulted in a qualitatively similar pattern of decrease in FeEDTA and ferricyanide reduction rates, although a longer time period was required for the decrease of the redox activity by iron resupply compared to the effect of inhibitors of protein synthesis.Inhibitors of the plasma membrane (PM)-bound H+-ATPase decreased the FeEDTA reduction activity of iron-deficient plants. In contrast, the reduction of ferricyanide and hexachloroiridate was not inhibited. Oxidation of ferrocyanide occurs in both iron-deficient and iron-sufficient plants at comparable rates. The reaction was decreased by the H+-ATPase inhibitor orthovanadate.The results are interpreted in terms of a simultaneous action of distinct redox systems in iron-deficient roots. The role of proton extrusion in the regulation of iron stress-induced electron transport is discussed.  相似文献   

8.
Summary The use of conjugates of microbial iron chelators (siderophores) and antibiotics for illicit transport of antibiotics into cells is a potentially powerful method for the rational design of therapeutic agents. The structural complexity of most natural siderophores has impeded progress in this area. Described here are the design, syntheses and preliminary biological studies of several siderophore--lactam antibiotic conjugates. Both hydroxamic-acid-based and catechol-based conjugates with and without amino acid spacers to carbacephalosporins were synthesized and demonstrated to be effective inhibitors ofEscherichia coli X580. Mutant selection was noted for each class of conjugates. Mutants selected from exposure of theE. coli to the hydroxamate conjugates were susceptible to the catechol conjugates and vice versa. Combinations of hydroxamate-and catechol-carbacephalosporin conjugates were most effective inhibitors ofE. coli X580.  相似文献   

9.
Summary Neurospora crassa produces several structurally distinct siderophores: coprogen, ferricrocin, ferrichrome C and some minor unknown compounds. Under conditions of iron starvation, desferricoprogen is the major extracellular siderophore whereas desferriferricrocin and desferriferrichrome C are predominantly found intracellularly. Mössbauer spectroscopic analyses revealed that coprogen-bound iron is rapidly released after uptake in mycelia of the wild-typeN.crassa 74A. The major intracellular target of iron distribution is desferriferricrocin. No ferritin-like iron pools could be detected. Ferricrocin functions as the main intracellular iron-storage peptide in mycelia ofN. crassa. After uptake of ferricrocin in both the wild-typeN. crassa 74A and the siderophore-free mutantN. crassa arg-5 ota aga, surprisingly little metabolization (11%) could be observed. Since ferricrocin is the main iron-storage compound in spores ofN. crassa, we suggest that ferricrocin is stored in mycelia for inclusion into conidiospores.  相似文献   

10.
A novel catechol-substituted cephalosporin, S-9096, showed potent antibacterial activity against Pseudomonas aeruginosa under both iron-deficient and aerobic conditions. S-9096 and ferric iron formed a chelate complex at the molar ratio of 3 to 1, which could be incorporated into P. aeruginosa cells grown under such conditions. Incorporation decreased when the cells were grown under either iron-sufficient or anaerobic conditions, with a concomitant disappearance of iron-regulated outer membrane proteins that were considered to function as receptors for ferric siderophores. These results indicated that the ferric chelate of S-9096 was incorporated into P. aeruginosa cells via a ferric iron transport pathway, which caused the high antibacterial potency of S-9096. All of the S-9096-resistant mutants that were able to grow even under iron-deficient conditions lacked an iron-regulated outer membrane protein having an apparent molecular mass of 66 kDa, suggesting the role of this protein as a receptor for the ferric chelate of S-9096. Correspondence to: Y. Yamano  相似文献   

11.
InSaccharomyces cerevisiae, most of the cellular chitin is produced by chitin synthase III, which requires the product encoded by theCSD2/CAL1/DIT101/KT12 gene. We have identified, isolated and structurally characterized aCSD2/CAL1/DIT101/KT12 homologue in the filamentous ascomyceteNeurospora crassa and have used a reverse genetics approach to determine its role in vivo. The yeast gene was used as a heterologous probe for the isolation of aN. crassa gene (designatedchs-4) encoding a polypeptide belonging to a class of chitin synthases which we have designated class IV. The predicted polypeptide encoded by this gene is highly similar to those ofS. cerevisiae andCandida albicans. N. crassa strains in whichchs-4 had been inactivated by the Repeat-Induced Point mutation (RIP) process grew and developed in a normal manner under standard growth conditions. However, when grown in the presence of sorbose (a carbon source which induces morphological changes accompanied by elevated chitin content), chitin levels in thechs-4 RIP strain were significantly lower than those observed in the wild type. We suggest that CHS4 may serve as an auxiliary enzyme inN. crassa and that, in contrast to yeasts, it is possible that filamentous fungi may have more than one class IV chitin synthase.A. Beth Din and C. A. Specht contributed equally to this work  相似文献   

12.
Under iron limitationPseudomonas putida WCS358 produces a fluorescent siderophore, pseudobactin 358, which, after complexing iron, is transported back into the cell via the specific outer membrane receptor PupA. In addition, this strain has the capacity to take up iron via a large variety of siderophores produced by other fluorescent pseudomonads. Putative receptor genes for such siderophores were identified in the chromosome of strain WCS358 by PCR using primers matching two domains conserved in four ferric pseudobactin receptors, including PupA. Eleven amplification products within the expected size range were obtained. Sequence analysis confirmed that the products were derived from genes encoding outer membrane receptors. Two complete receptor genes were isolated from a genomic library ofP. putida WCS358. Both protein products are involved in the transport of a limited number of specific ferric pseudobactins. These results indicate that the ability ofP. putida WCS358 to exploit many different heterologous pseudobactins is related to the presence of multiple outer membrane receptor proteins.  相似文献   

13.
Biochemical and electron microscopic evidence is presented that sideramine-free fungi form iron hydroxide polymer layers on the cell surface when grown in an iron containing medium.Iron hydroxide polymer formation on the cell surface is completely prevented in sideramine producing strains of Neurospora crassa. After feeding a sideramine-free mutant of Neurospora crassa with ornithine in order to restore the sideramine synthesis the iron hydroxide coat is gradually dissolved.The addition of excess citrate and malate to the incubation medium also prevents iron polymer adsorption, suggesting that hydroxy acids may be involved in iron supply, when sideramine-free organisms are grown in iron containing media.In order to study the interaction between iron hydroxide polymer deposition upon the cell surface and iron chelating acids in Neurospora crassa, the amount and the proportion of excreted acids was studied under various experimental conditions. Gas chromatographic analysis of the acids produced under iron deficient conditions revealed that succinate, malate and citrate were present within the cells in the early growth phase. The acids were sequentially excreted into the medium in the order succinate, malate and citrate. The amount of succinate decreased after 2 days of cultivation, whereas the amount of malate and citrate continually increased. Although citrate was present within the cells from the 1st day, excretion occurred very late, generally after the 3rd day.It is suggested that sideramine-free fungi first adsorb iron as a hydroxide polymer on the cell surface, and that it is gradually solubilized by excreted hydroxy acids such as citrate or malate. Thus high local concentrations of iron chelated by hydroxy acids provide sideramine-free fungi with a continuous iron supply.Abbreviations BSTFA N,O-Bis(trimethylsilyl)-trifluoracetamide - GC Gaschromatography - EGTA Ethylenglykol-bis(2-aminoethylether) N,N-tetraacetic acid - TMS Trimethylsilyl  相似文献   

14.
15.
Under conditions of iron limitation many rhizospheric bacteria produce siderophores, ferric iron-specific ligands, which may enhance plant growth by increasing the availability of iron near the roots. Thirty-five strains of Rhizobium ciceri, specific to chickpea (Cicer arietinum L.), were screened for their ability to grow on iron-deficient medium and to produce siderophores. Maximal growth of all strains previously depleted in iron was obtained in medium containing 5 to 10 m of ferric iron. When iron limitation was achieved by the addition of 2,2-bipyridyl or EDDHA [ethylene diamine di(o-hydroxyphenyl) acetic acid] to the medium, only two strains were able to scavenge iron and grow. Siderophore production by these two strains was detected by the Chrome Azurol S assay (CAS), a universal test for siderophores. No hydroxamate-type siderophores were detected in the supernatants of Rhizobium ciceri cultures. However, some strains secreted salicylic acid and 2,3-dihydroxybenzoic acid as phenolate-type siderophores. Addition of ferric iron to the culture medium increased growth yield significantly but depressed the production of siderophores. Although these compounds are produced in response to iron deficiency, nutritive components of the culture medium significantly affected their production. It seems that CuII, MoVI and MnII ions bound competitively with iron to siderophores, resulting in a 34 to 100% increase in production.  相似文献   

16.
Summary In iron-deficient conditions,Pseudomonas aeruginosa ATCC 15692 synthesizes two major siderophores, pyoverdins Pa and pyoverdin Pa B. Two other compounds, pyoverdin Pa A (occurring from hydrolysis of pyoverdin Pa during the culture) and pyoverdin Pa C (occurring artifactually during the purification procedure) were also isolated. All these compounds possess the same partly cyclic peptide chain wherel-Orn(OH · HCO) isN -formyl,N -hydroxy-l-ornithine. The chain is bound to a chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline and having the (S) configuration. The four pyoverdins differ only in the acyl substituent bound to the nitrogen atom bound to carbon C3 of the chromophore. This is succinamide (pyoverdin Pa), succinic acid (pyoverdin Pa A), methyl succinate (pyoverdin Pa C) and 2-oxoglutaric acid (pyoverdin Pa B). The complete1H- and13CNMR assignments, using two-dimensional total correlation NMR spectroscopy (TOCSY) and rotating-frame Overhauser enhancement spectroscopy (ROESY) procedures, as well as1H-13C correlations, are reported. The complete sequence of the peptide using CH-NH correlations was achieved by NMR and confirmed the partly cyclic structure earlier reported using fast-atom-bombardment mass spectrometry (FAB-MS) on the siderophores and their dansylated fragments [Briskot G, Taraz K, Budzikiewicz H (1989)Liebigs Ann Chem: 375–384]. The use of these NMR procedures appears to be a tool of choice and a complementary approach to FAB-MS in the structure determination of some complex pyoverdins.Abbreviations Ser serine - Arg arginine - Thr ethreonine - Lys lysine - OHOrn N -hydroxyornithine - Chr chromophore  相似文献   

17.
Summary Linear hydroxamate derivatives, possessing chiral -amino acid moieties, were synthesized and their iron transport activities were studied in bacteria and fungi. No growth-promoting activity could be detected in the Gram-positive hydroxamate-auxotrophAureobacterium flavescens JG9. However, Gram-negative enterobacteria, such asEscherichia coli, Pantoea agglomerans andHafnia alvei were able to utilize iron from these analogues. Uptake of55Fe-labeled analogues was inhibited by sodium azide, suggesting an active transport process. The receptors involved during uptake in enterobacteria were identified by using appropriate indicator organisms which are defective in the transport of either ferrioxamines (P. agglomerans FM13), coprogens (H. alvei), or both of these siderophore classes (E. coli fhuE). Our data suggest that the chiral hydroxamates are recognized by the ferrioxamine receptor (FoxA) and the coprogen receptor (FhuE) at a ratio which depends on the optical/ isomer fraction and the nature of side chains. Transport was also observed in the fungusNeurospora crassa, known to take up coprogen rather than ferrioxamines, suggesting that in this fungus the synthetic analogues behave like coprogen.  相似文献   

18.
Mycobacterium tuberculosis, the causative agent of human tuberculosis, synthesizes and secretes siderophores in order to compete for iron (an essential micronutrient). Successful iron acquisition allows M. tuberculosis to survive and proliferate under the iron-deficient conditions encountered in the host. To examine structural determinants important for iron siderophore transport in this pathogen, the citrate-based siderophores petrobactin, acinetoferrin and various acinetoferrin homologs were synthesized and used as iron transport probes. Mutant strains of M. tuberculosis deficient in native siderophore synthesis or transport were utilized to better understand the mechanisms involved in iron delivery via the synthetic siderophores. Acinetoferrin and its derivatives, especially those containing a cyclic imide group, were able to deliver iron or gallium into M. tuberculosis which promoted or inhibited, respectively, the growth of this pathogen. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3 background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.  相似文献   

20.
Transport proteins of microorganisms may either belong to the ATP-binding cassette (ABC) superfamily or to the major facilitator (MFS)-superfamily. MFS transporters are single-polypeptide membrane transporters that transport small molecules via uniport, symport or antiport mechanisms in response to a chemiosmotic gradient. Although Saccharomyces cerevisiae is a non-siderophore producer, various bacterial and fungal siderophores can be utilized as an iron source. From yeast genome sequencing data six genes of the unknown major facilitator (UMF) family were known of which YEL065w Sce was recently identified as a transporter for the bacterial siderophore ferrioxamine B (Sit1p). The present investigation shows that another UMF gene, YHL047c Sce, encodes a transporter for the fungal siderophore triacetylfusarinine C. The gene YHL047c Sce (designated TAF1) was disrupted using the kanMX disruption module in a fet3 background (strain DEY 1394 fet3), possessing a defect in the high affinity ferrous iron transport. Growth promotion assays and transport experiments with 55Fe-labelled triacetylfusarinine C showed a complete loss of iron utilization and uptake in the disrupted strain, indicating that TAF1 is the gene for the fungal triacetylfusarinine transport in Saccharomyces cerevisiae and possibly in other siderophore producing fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号