首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Iron regulatory proteins (IRPs) control iron metabolism by specifically interacting with iron-responsive elements (IREs) on mRNAs. Nitric oxide (NO) converts IRP-1 from a [4Fe-4S] aconitase to a trans-regulatory protein through Fe-S cluster disassembly. Here, we have focused on the fate of IRE binding IRP1 from murine macrophages when NO flux stops. We show that virtually all IRP-1 molecules from NO-producing cells dissociated from IRE and recovered aconitase activity after re-assembling a [4Fe-4S] cluster in vitro. The reverse change in IRP-1 activities also occurred in intact cells no longer exposed to NO and did not require de novo protein synthesis. Likewise, inhibition of mitochondrial aconitase via NO-induced Fe-S cluster disassembly was also reversed independently of protein translation after NO removal. Our results provide the first evidence of Fe-S cluster repair of NO-modified aconitases in mammalian cells. Moreover, we show that reverse change in IRP-1 activities and repair of mitochondrial aconitase activity depended on energized mitochondria. Finally, we demonstrate that IRP-1 activation by NO was accompanied by both a drastic decrease in ferritin levels and an increase in transferrin receptor mRNA levels. However, although ferritin expression was recovered upon IRP-1-IRE dissociation, expression of transferrin receptor mRNA continued to rise for several hours after stopping NO flux.  相似文献   

2.
3.
4.
Mitochondrial energy metabolism and Krebs cycle activities are developmentally regulated in the life cycle of the protozoan parasite Trypanosoma brucei. Here we report cloning of a T. brucei aconitase gene that is closely related to mammalian iron-regulatory protein 1 (IRP-1) and plant aconitases. Kinetic analysis of purified recombinant TbACO expressed in Escherichia coli resulted in a K(m) (isocitrate) of 3 +/- 0.4 mM, similar to aconitases of other organisms. This was unexpected since an arginine conserved in the aconitase protein family and crucial for substrate positioning in the catalytic center and for activity of pig mitochondrial aconitase (Zheng, L., Kennedy, M. C., Beinert, H., and Zalkin, H. (1992) J. Biol. Chem. 267, 7895-7903) is substituted by leucine in the TbACO sequence. Expression of the 98-kDa TbACO was shown to be lowest in the slender bloodstream stage of the parasite, 8-fold elevated in the stumpy stage, and increased a further 4-fold in the procyclic stage. The differential expression of TbACO protein contrasted with only minor changes in TbACO mRNA, indicating translational or post-translational mechanisms of regulation. Whereas animal cells express two distinct compartmentalized aconitases, mitochondrial aconitase and cytoplasmic aconitase/IRP-1, TbACO accounts for total aconitase activity in trypanosomes. By cell fractionation and immunofluorescence microscopy, we show that native as well as a transfected epitope-tagged TbACO localizes in both the mitochondrion (30%) and in the cytoplasm (70%). Together with phylogenetic reconstructions of the aconitase family, this suggests that animal IRPs have evolved from a multicompartmentalized ancestral aconitase. The possible functions of a cytoplasmic aconitase in trypanosomes are discussed.  相似文献   

5.
6.
Iron regulatory protein-1 (IRP-1) is a cytosolic RNA-binding protein that is a regulator of iron homeostasis in mammalian cells. IRP-1 binds to RNA structures, known as iron-responsive elements, located in the untranslated regions of specific mRNAs, and it regulates the translation or stability of these mRNAs. Iron regulates IRP-1 activity by converting it from an RNA-binding apoprotein into a [4Fe-4S] cluster protein exhibiting aconitase activity. IRP-1 is widely found in prokaryotes and eukaryotes. Here, we report the biochemical characterization and regulation of an IRP-1 homolog in Caenorhabditis elegans (GEI-22/ACO-1). GEI-22/ACO-1 is expressed in the cytosol of cells of the hypodermis and the intestine. Like mammalian IRP-1/aconitases, GEI-22/ACO-1 exhibits aconitase activity and is post-translationally regulated by iron. Although GEI-22/ACO-1 shares striking resemblance to mammalian IRP-1, it fails to bind RNA. This is consistent with the lack of iron-responsive elements in the C. elegans ferritin genes, ftn-1 and ftn-2. While mammalian ferritin H and L mRNAs are translationally regulated by iron, the amounts of C. elegans ftn-1 and ftn-2 mRNAs are increased by iron and decreased by iron chelation. Excess iron did not significantly alter worm development but did shorten their life span. These studies indicated that iron homeostasis in C. elegans shares some similarities with those of vertebrates.  相似文献   

7.
8.
9.
Iron regulatory protein-1 (IRP-1) is known as a cytosolic aconitase and a central regulator of iron (Fe) homeostasis. IRP-1 regulates the expression of Fe metabolism-related proteins by interacting with the Fe-responsive element (IRE) in the untranslated regions of mRNAs of these proteins. However, it is less known whether IRP-1 modulates various non-Fe metals. In the present study, we showed that treatment of homogenously purified IRP-1 with non-Fe metals decreased the affinity to IRE in RNA band shift assays and increased aconitase activity. Non-Fe metals also inhibited (55)Fe incorporation into the fourth labile position of the Fe-S cluster of IRP-1. In PLC hepatoma cells, metal loading inactivated binding activity and activated enzyme activity. It also suppressed transferrin receptor mRNA expression in the cells. These results suggest that various non-Fe metals modulate IRP-1 by conversion of the 3Fe-4S apo-form to a [1 non-Fe metal + 3Fe]-4Fe holo-form.  相似文献   

10.
Iron regulatory protein-1 (IRP-1) controls the expression of several mRNAs by binding to iron-responsive elements (IREs) in their untranslated regions. In iron-replete cells, a 4Fe-4S cluster converts IRP-1 to cytoplasmic aconitase. IRE binding activity is restored by cluster loss in response to iron starvation, NO, or extracellular H2O2. Here, we study the effects of intracellular quinone-induced oxidative stress on IRP-1. Treatment of murine B6 fibroblasts with menadione sodium bisulfite (MSB), a redox cycling drug, causes a modest activation of IRP-1 to bind to IREs within 15-30 min. However, IRE binding drops to basal levels within 60 min. Surprisingly, a remarkable loss of both IRE binding and aconitase activities of IRP-1 follows treatment with MSB for 1-2 h. These effects do not result from alterations in IRP-1 half-life, can be antagonized by the antioxidant N-acetylcysteine, and regulate IRE-containing mRNAs; the capacity of iron-starved MSB-treated cells to increase transferrin receptor mRNA levels is inhibited, and MSB increases the translation of a human growth hormone indicator mRNA bearing an IRE in its 5'-untranslated region. Nonetheless, MSB inhibits ferritin synthesis. Thus, menadione-induced oxidative stress leads to post-translational inactivation of both genetic and enzymatic functions of IRP-1 by a mechanism that lies beyond the "classical" Fe-S cluster switch and exerts multiple effects on cellular iron metabolism.  相似文献   

11.
12.
Iron and citrate are essential for the metabolism of most organisms, and regulation of iron and citrate biology at both the cellular and systemic levels is critical for normal physiology and survival. Mitochondrial and cytosolic aconitases catalyze the interconversion of citrate and isocitrate, and aconitase activities are affected by iron levels, oxidative stress and by the status of the Fe–S cluster biogenesis apparatus. Assembly and disassembly of Fe–S clusters is a key process not only in regulating the enzymatic activity of mitochondrial aconitase in the citric acid cycle, but also in controlling the iron sensing and RNA binding activities of cytosolic aconitase (also known as iron regulatory protein IRP1). This review discusses the central role of aconitases in intermediary metabolism and explores how iron homeostasis and Fe–S cluster biogenesis regulate the Fe–S cluster switch and modulate intracellular citrate flux.  相似文献   

13.
14.
15.
Iron regulatory proteins (IRP-1 and IRP-2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements, which are located in the 3'-untranslated region and the 5'-untranslated region of their respective mRNAs. Cellular iron levels affect binding of IRPs to iron-responsive elements and consequently expression of TfR and ferritin. Moreover, NO(*), a redox species of nitric oxide that interacts primarily with iron, can activate IRP-1 RNA binding activity resulting in an increase in TfR mRNA levels. Recently we found that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO(+) (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA binding of IRP-2 followed by IRP-2 degradation, and these changes were associated with a decrease in TfR mRNA levels (Kim, S., and Ponka, P. (1999) J. Biol. Chem. 274, 33035-33042). In this study, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP-1 binding activity, whereas RNA binding of IRP-2 decreased and was followed by a degradation of this protein. Moreover, the decrease of IRP-2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. Furthermore, LPS/IFN-gamma-stimulated RAW 264.7 cells showed increased rates of ferritin synthesis. These results suggest that NO(+)-mediated degradation of IRP-2 plays a major role in iron metabolism during inflammation.  相似文献   

16.
Human iron regulatory protein-1 (IRP-1) is a bifunctional protein that regulates iron metabolism by binding to mRNAs encoding proteins involved in iron uptake, storage, and utilization. Intracellular iron accumulation regulates IRP-1 function by promoting the assembly of an iron-sulfur cluster, conferring aconitase activity to IRP-1, and hindering RNA binding. Using protein footprinting, we have studied the structure of the two functional forms of IRP-1 and have mapped the surface of the iron-responsive element (IRE) binding site. Binding of the ferritin IRE or of the minimal regulatory region of transferrin receptor mRNA induced strong protections against proteolysis in the region spanning amino acids 80 to 187, which are located in the putative cleft thought to be involved in RNA binding. In addition, IRE-induced protections were also found in the C-terminal domain at Arg-721 and Arg-728. These data implicate a bipartite IRE binding site located in the putative cleft of IRP-1. The aconitase form of IRP-1 adopts a more compact structure because strong reductions of cleavage were detected in two defined areas encompassing residues 149 to 187 and 721 to 735. Thus both ligands of apo-IRP-1, the IRE and the 4Fe-4S cluster, induce distinct but overlapping alterations in protease accessibility. These data provide evidences for structural changes in IRP-1 upon cluster formation that affect the accessibility of residues constituting the RNA binding site.  相似文献   

17.
18.
Two different aconitases are known to be expressed after thegermination of oil-seed plants. One is a mitochondrial aconitasethat is involved in the tricarboxylic acid cycle. The otherparticipates in the glyoxylate cycle, playing a role in gluconeogenesisfrom stored oil. We isolated and characterized a cDNA for anaconitase from etiolated pumpkin cotyledons. The cDNA was 3,145bp long and capable of encoding a protein of 98 kDa. N-terminaland C-terminal amino acid sequences deduced from the cDNA didnot contain mitochondrial or glyoxysomal targeting signals.A search of protein databases suggested that the cDNA encodeda cytosolic aconitase. Immuno blotting analysis with a specificantibody against the aconitase expressed in Escherichia colirevealed that developmental changes in the amount of the aconitasewere correlated with changes in levels of other enzymes of theglyoxylate cycle during growth of seedlings. Further analysisby subcellular fractionation and immunofluorescence microscopyrevealed that aconitase was present only in the cytosol andmitochondria. No glyoxysomal aconitase was found in etiolatedcotyledons even though all the other enzymes of the glyoxylatecycle are known to be localized in glyoxysomes. Taken together,the data suggest that the cytosolic aconitase participates inthe glyoxylate cycle with four glyoxysomal enzymes. (Received December 1, 1994; Accepted March 17, 1995)  相似文献   

19.
20.
Aconitases are iron-sulfur hydrolyases catalysing the interconversion of citrate and isocitrate in a wide variety of organisms. Eukaryotic aconitases have been assigned additional roles, as in the case of the metazoan dual activity cytosolic aconitase-iron regulatory protein 1 (IRP1). This human protein was produced in yeast mitochondria to probe IRP1 folding in this organelle where iron-sulfur synthesis originates. The behaviour of human IRP1 was compared with that of genuine mitochondrial (yeast or human) aconitases. All enzymes were functional in yeast mitochondria, but IRP1 was found to form dense particles as detected by electron microscopy. MS analysis of purified inclusion bodies evidenced the presence of human IRP1 and alpha-ketoglutarate dehydrogenase complex component 1 (KGD1), one of the subunits of alpha-ketoglutarate dehydrogenase. KGD1 triggered formation of the mitochondrial aggregates, because the latter were absent in a KGD1(-) mutant, but it did not efficiently do so in the cytosol. Despite the iron-binding capacity of IRP1 and the readily synthesis of iron-sulfur clusters in mitochondria, the dense particles were not iron-rich, as indicated by elemental analysis of purified mitochondria. The data show that proper folding of dual activity IRP1-cytosolic aconitase is deficient in mitochondria, in contrast to genuine mitochondrial aconitases. Furthermore, efficient clearance of the aggregated IRP1-KGD1 complex does not occur in the organelle, which emphasizes the role of molecular interactions in determining the fate of IRP1. Thus, proper folding of human IRP1 strongly depends on its cellular environment, in contrast to other members of the aconitase family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号