首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (105 to 106 CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 104 CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

2.
This study investigated both the activity of nisin Z, either encapsulated in liposomes or produced in situ by a mixed starter, against Listeria innocua, Lactococcus spp., and Lactobacillus casei subsp. casei and the distribution of nisin Z in a Cheddar cheese matrix. Nisin Z molecules were visualized using gold-labeled anti-nisin Z monoclonal antibodies and transmission electron microscopy (immune-TEM). Experimental Cheddar cheeses were made using a nisinogenic mixed starter culture, containing Lactococcus lactis subsp. lactis biovar diacetylactis UL 719 as the nisin producer and two nisin-tolerant lactococcal strains and L. casei subsp. casei as secondary flora, and ripened at 7 degrees C for 6 months. In some trials, L. innocua was added to cheese milk at 10(5) to 10(6) CFU/ml. In 6-month-old cheeses, 90% of the initial activity of encapsulated nisin (280 +/- 14 IU/g) was recovered, in contrast to only 12% for initial nisin activity produced in situ by the nisinogenic starter (300 +/- 15 IU/g). During ripening, immune-TEM observations showed that encapsulated nisin was located mainly at the fat/casein interface and/or embedded in whey pockets while nisin produced by biovar diacetylactis UL 719 was uniformly distributed in the fresh cheese matrix but concentrated in the fat area as the cheeses aged. Cell membrane in lactococci appeared to be the main nisin target, while in L. casei subsp. casei and L. innocua, nisin was more commonly observed in the cytoplasm. Cell wall disruption and digestion and lysis vesicle formation were common observations among strains exposed to nisin. Immune-TEM observations suggest several modes of action for nisin Z, which may be genus and/or species specific and may include intracellular target-specific activity. It was concluded that nisin-containing liposomes can provide a powerful tool to improve nisin stability and availability in the cheese matrix.  相似文献   

3.
This study investigated both the activity of nisin Z, either encapsulated in liposomes or produced in situ by a mixed starter, against Listeria innocua, Lactococcus spp., and Lactobacillus casei subsp. casei and the distribution of nisin Z in a Cheddar cheese matrix. Nisin Z molecules were visualized using gold-labeled anti-nisin Z monoclonal antibodies and transmission electron microscopy (immune-TEM). Experimental Cheddar cheeses were made using a nisinogenic mixed starter culture, containing Lactococcus lactis subsp. lactis biovar diacetylactis UL 719 as the nisin producer and two nisin-tolerant lactococcal strains and L. casei subsp. casei as secondary flora, and ripened at 7°C for 6 months. In some trials, L. innocua was added to cheese milk at 105 to 106 CFU/ml. In 6-month-old cheeses, 90% of the initial activity of encapsulated nisin (280 ± 14 IU/g) was recovered, in contrast to only 12% for initial nisin activity produced in situ by the nisinogenic starter (300 ± 15 IU/g). During ripening, immune-TEM observations showed that encapsulated nisin was located mainly at the fat/casein interface and/or embedded in whey pockets while nisin produced by biovar diacetylactis UL 719 was uniformly distributed in the fresh cheese matrix but concentrated in the fat area as the cheeses aged. Cell membrane in lactococci appeared to be the main nisin target, while in L. casei subsp. casei and L. innocua, nisin was more commonly observed in the cytoplasm. Cell wall disruption and digestion and lysis vesicle formation were common observations among strains exposed to nisin. Immune-TEM observations suggest several modes of action for nisin Z, which may be genus and/or species specific and may include intracellular target-specific activity. It was concluded that nisin-containing liposomes can provide a powerful tool to improve nisin stability and availability in the cheese matrix.  相似文献   

4.
As a pre-requisite to monoclonal antibody development, an efficient purification strategy was devised that yielded 72 mg of nisin Z from 14.5 1 of Lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 (L. diacetylactis UL719) culture in supplemented whey permeate. Specific monoclonal antibodies (mAbs) were produced in mice against the purified nisin Z using keyhole limpet hemocyanin as a carrier protein. These antibodies did not recognize nisin A, suggesting that the asparagine residue at position 27 is involved in antibody recognition to nisin Z. However, the high reactivity of mAbs against biologically inactive nisin Z degradation products, produced during storage of freeze-dried pure nisin Z at -70 degrees C, indicated that the dehydroalanine residue at position 5 (Dha5), required for biological activity, is not necessary in nisin Z recognition by the mAb. A competitive enzyme immunoassay (cEIA) using the specific anti-nisin Z mAb was developed and used for rapid and sensitive detection and quantification of nisin Z in fresh culture supernatant, milk and whey. Detection limits of 78 ng/ml in phosphate-buffered saline, 87 ng/ml in culture supernatant, 106 ng/ml in milk and 90.5 ng/ml in whey were obtained for this assay. The cEIA using specific mAbs can be used to quantify nisin Z in food products.  相似文献   

5.
Specific nisin polyclonal antibodies (PAb) were produced in rabbits using nisin Z produced by Lactococcus lactis subsp. lactis biovar diacetylactis UL 719. Antisera were obtained from white female New Zealand rabbits that were first immunized with a nisin Z-keyhole limpet haemocyanin conjugate and boosted with free nisin Z. Nisin-specific PAb were purified by affinity chromatography with a yield of 15 mg specific antinisin 100 ml-1 serum. The detection limit of the ELISA test for nisin Z was 0.75 ng ml-1 in buffer but was 1.7 and 3.5 ng ml-1 in milk and complex media broth spiked (5, 10, 20 microg ml-1) with nisin Z, respectively. In nisin Z-spiked samples, the average concentration was between 90 and 107% of actual added amount. In contrast, when the bioassay (microtitration method) was used, only 50-63% of nisin Z biological activity could be detected. In addition, the affinity-purified nisin PAb, antirabbit IgG gold conjugate and transmission electron microscopy were successfully used to locate nisin Z on producing cells and to observe its bactericidal effects against sensitive cells.  相似文献   

6.
A highly specific antisera was produced in New Zealand white rabbits against nisin Z, a 3400 Da bacteriocin produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719. A dot immunoblot assay was then developed to detect nisin Z in milk and whey. As few as 1·5 10−1 international units per ml (IU ml−1), corresponding to 0·003 μg ml−1 of pure nisin Z, were detected in carbonate-bicarbonate buffer within 6 h using chemiluminescence. When milk and whey samples were tested, approximately 0·155 μg ml−1 (7·9 IU ml−1) of nisin Z was detected. The detection limit obtained was lower than that of traditional methods including microtitration and agar diffusion.  相似文献   

7.
The conditions for high production of nisin Z and pediocin during pH-controlled, mixed-strain batch cultures in a supplemented whey permeate medium with Lactococcus lactis subsp. lactis biovar. diacetylactis UL719, a nisin Z producer strain, and variant T5 of Pediococcus acidilactici UL5, a pediocin-producing strain resistant to high concentrations of nisin, were studied. Mixed cultures were performed at 37 °C and pH 5·5 by first inoculating with variant T5 and then with L. diacetylactis UL719 after 8 h incubation, and were compared with single-strain batch cultures. High productions of both nisin Z and pediocin were obtained after 18 or 16 h incubation during mixed cultures, with titres of 3000 and 730 AU ml−1, or 1060 and 1360 AU ml−1, respectively, corresponding to approximately 75 and 55, or 25 and 100 mg l−1 of pure nisin Z and pediocin, respectively. In pure cultures, nisin Z and pediocin productions were higher than in mixed cultures, and maximum activities were obtained after 10 h incubation, with approximately 10 000 AU ml−1 (250 mg l−1 pure nisin Z) and 2500 AU ml−1 (190 mg l−1 pure pediocin). During mixed cultures, significant pediocin degradation was observed in the culture supernatant fluid after 16 h incubation, together with a sharp drop in Ped. acidilactici UL5 cell viability. In the test conditions, the feasibility of producing a nisin/pediocin mixture by mixed-strain fermentation was demonstrated. The bacteriocin mixture produced in a supplemented whey permeate medium could be used as a natural food-grade biopreservative with a broad activity spectrum.  相似文献   

8.
The bacteriocin produced by Lactococcus lactis ssp. lactis biovar. diacetylactis UL 719 was purified and characterized. Two peaks exhibiting antimicrobial activity were obtained after purification. Primary structure of the peptide of major peak 2 was identical to that of nisin Z when determined by Edman degradation and confirmed by DNA sequence analysis. The molecular mass as determined by mass spectrometry was 3346·39 ± 0·40 Da for peak 1 and 3330·39 ± 0·27 Da for peak 2, which suggests that peak 1 may correspond to an oxidized form of nisin Z. The two purified peaks exhibiting xrantimicrobial activity appear to correspond with the oxidized and native forms of nisin Z.  相似文献   

9.
Diversity among lactococci isolated from ewes' raw milk and cheese   总被引:1,自引:0,他引:1  
P. GAYA, M. BABÍN, M. MEDINA and M. NUÑEZ.1999.The technological and genetic characteristics of lactococci present in ewes' raw milk and 1-d-old ewes' raw milk cheeses sampled over a 1-year period were investigated. The proportion of lactic acid bacteria isolates from milk samples able to decrease milk pH by more than 1·25 units after 6 h incubation at 30 °C reached 14·5% in spring vs 10·7% in summer, 8·3% in autumn and 3·0% in winter. In 1-d-old cheese samples, the proportion of lactic acid bacteria able to lower milk pH by more than 1·25 units increased up to 32·3% in spring vs 23·4% in summer, 8·0% in autumn and 10·3% in winter. Fast acid-producing lactic acid bacteria mainly belonged to the genus Lactococcus . Using polymerase chain reaction protocols, fast acid-producing lactococci were grouped as 61  Lactococcus lactis subsp. lactis , 13  L. lactis subsp. cremoris and 14  L. lactis subsp. lactis biovar diacetylactis. Randomly amplified polymorphic DNA (RAPD) fingerprinting of fast acid-producing lactococci, using two primers, resulted in 21 different RAPD patterns for L. lactis subsp. lactis isolates, nine RAPD patterns for L. lactis subsp. cremoris isolates and three RAPD patterns for L. lactis subsp. lactis biovar diacetylactis isolates. Up to 19 different RAPD patterns were found for L. lactis isolates from cheeses made in a particular month.  相似文献   

10.
The major function of lactic starter cultures in cheese making is to produce lactic and other organic acids from the carbohydrates present in milk. The activity of six starter cultures consisting of two Lactococcus lactis ssp. lactis , two Lactococcus lactis ssp. lactis biovar. diacetylactis and two Leuconostoc strains, was tested by monitoring the evolution of the organic acid composition of milk by a modified HPLC method. In addition, their performance as cheese starters was also tested. The HPLC method developed proved to be a precise tool to monitor the organic acid content. Thus, it can be used to follow the fermentation ability of starter cultures, providing information about the type of fermentation. The use of any of the six starters assayed is suggested for manufacturing Afuega'l Pitu cheese.  相似文献   

11.
12.
Defined starter systems, consisting of bacteriocin-tolerant Lactococcus lactis subsp. lactis H6 alone or in combination with bacteriocin-sensitive L. lactis subsp. cremoris H1, and low amounts of a bacteriocin-producing culture, were developed and used for the manufacture of semi-hard cheese. Aminopeptidase activity and proteolysis were increased and acidification retarded in cheeses made from milk inoculated with lactococci and the bacteriocin-producing culture with respect to cheeses from milk inoculated with only lactococci. Cheeses made with a defined-strain starter system consisting of L. lactis subsp. lactis H6 and the bacteriocin-producing culture received the highest scores for flavour intensity and quality.  相似文献   

13.

Aims

The aim of this study is to evaluate the capacity of three bacteriocin producers, namely Lactococcus lactis subsp. lactis biovar diacetylactis UL719 (nisin Z producer), L. lactis ATCC 11454 (nisin A producer) and Pediococcus acidilactici UL5 (pediocin PA‐1 producer), and to grow and produce their active bacteriocins in Macfarlane broth, which mimics the nutrient composition encountered in the human large intestine.

Methods and Results

The three bacteriocin‐producing strains were grown in Macfarlane broth and in De Man–Rogosa–Sharpe (MRS) broth. For each strain, the bacterial count, pH drop and production of organic acids and bacteriocins were measured for different period of time. The ability of the probiotic candidates to inhibit Listeria ivanovii HPB 28 in co‐culture in Macfarlane broth was also examined. Lactococcus lactis subsp. lactis biovar diacetylactis UL719, L. lactis ATCC 11454 and Ped. acidilactici UL5 were able to grow and produce their bacteriocins in MRS broth and in Macfarlane broth. Each of the three candidates inhibited L. ivanovii HPB 28, and this inhibition activity was correlated with bacteriocin production. The role of bacteriocin production in the inhibition of L. ivanovii in Macfarlane broth was confirmed for Ped. acidilactici UL5 using a pediocin nonproducer mutant.

Conclusions

The data provide some evidence that these bacteria can produce bacteriocins in a complex medium with carbon source similar to those found in the colon.

Significance and Impact of the Study

This study demonstrates the capacity of lactic acid bacteria to produce their bacteriocins in a medium simulating the nutrient composition of the large intestine.  相似文献   

14.
Lactate dehydrogenase (ldh) gene sequences, levels of 16S rRNA group-specific probe binding, and phenotypic characteristics were compared for 45 environmental isolates and four commercial starter strains of Lactococcus lactis to identify evolutionary groups best suited to cheddar cheese manufacture, ldh sequences from the environmental isolates showed high similarity to those from two groups of L. lactis used for industrial fermentations, L. lactis subsp. cremoris and subsp. lactis. Within each phylogenetically defined subspecies, ldh sequence similarities were greater than 99.1%. Strains with phenotypic traits formerly diagnostic for both subspecies were found in each ldh similarity group, but only strains belonging to L. lactis subsp. cremoris by both the newer, genetic and the older, superseded phenotypic criteria were judged potentially suitable for the commercial production of cheddar cheese. Identical evolutionary relationships were inferred from ldh sequences and from binding of subspecies-specific, 16S rRNA-directed oligonucleotide probes. However, groups defined according to these chromosomal traits bore no relationship to patterns of arginine deamination, carbon substrate utilization, or bacteriophage sensitivity, which may be encoded by cryptic genes or sexually transmissible genetic elements. Fourteen new L. lactis subsp. cremoris isolates were identified as suitable candidates for cheddar cheese manufacture, and 10 of these were completely resistant to three different batteries of commercial bacteriophages known to reduce starter activity.  相似文献   

15.
16.
A Lactococcus strain with strong antimicrobial activity was isolated from raw milk Manchego cheese during a survey on the production of bacteriocins by lactic acid bacteria present in raw milk cheeses. It was identified as Lactococcus lactis subsp. lactis, phenotypically by its morphological and physiological characteristics and genotypically by a PCR technique. When tested for tolerance to known bacteriocins produced by lactococci, it was shown to be resistant to nisin A and nisin Z. The presence of genes encoding nisin and lacticin 481 was revealed by PCR techniques with specific probes. Sequences of the respective PCR amplified fragments matched sequences reported for nisin Z and lacticin 481.  相似文献   

17.
AIMS: This work was carried out to study the acid production by Lactococcus lactis subsp. lactis strains isolated from goat's milk and goat cheese (Valdeteja variety) in order to select a suitable starter culture for industrial goat cheese manufacturing. METHODS AND RESULTS: The titrable acidity of 45 Lactococcus lactis subsp. lactis strains isolated from a home-made batch of Valdeteja cheese with excellent sensory characteristics was measured over a period of 18 h. The strains were divided into two groups depending on the acid production rate: 20 fast acid producer (F) strains and 25 slow acid producer (S) strains. The kinetic parameters (lag phase, maximum acid production rate and value of upper asymptote curve) of the acid production curves for F and S strains were significantly (P < 0.001) different. CONCLUSIONS: Significant (P < 0.001) differences between titrable acidity of F and S strains were observed after the second hour of incubation. SIGNIFICANCE AND IMPACT OF THE STUDY: An F strain acetoin producer (Lactococcus lactis subsp. lactis 470Ch2) was selected as autochthonous starter culture for industrial Valdeteja goat cheese manufacturing.  相似文献   

18.
During cheese making, interactions between different strains of lactic acid bacteria play an important role. However, few methods are available to specifically determine each bacterial population in mixed cultures, in particular for strains of the same species. The aim of this study was to develop a real-time PCR quantification method to monitor the population of Lactococcus cremoris ATCC 19257 in mixed culture with Lactobacillus rhamnosus RW-9595M and the bacteriocin-producing microorganism Lc. diacetylactis UL719. The specificity of the two primers 68FCa33 and 16SR308 used to amplify a 240-bp fragment of DNA from Lc. cremoris was demonstrated by conventional PCR. Using these primers for real-time PCR, the detection limit was 2 cfu/reaction or 200 cfu of Lc. cremoris ATCC 19257 per millilitre of mixed culture in milk. In pure culture batch fermentation, good correlation was obtained between real-time PCR and the conventional plating method for monitoring Lc. cremoris growth. In mixed culture batch fermentation, Lb. rhamnosus and Lc. cremoris decreased due to nisin Z production by Lc. diacetylactis. The decrease of the Lc. cremoris cell population detected by real-time PCR was not possible to observe by the plate count method in the presence of a Lc. diacetylactis population that was 1 log higher.  相似文献   

19.
Lactococcus lactis subsp. lactis biovar diacetylactis strains are utilized in several industrial processes for producing the flavoring compound diacetyl or its precursor alpha-acetolactate. Using random mutagenesis with nitrosoguanidine, we selected mutants that were deficient in alpha-acetolactate decarboxylase and had low lactate dehydrogenase activity. The mutants produced large amounts of alpha-acetolactate in anaerobic milk cultures but not in aerobic cultures, except when the medium was supplemented with catalase, yeast extract, or hemoglobin.  相似文献   

20.
The aim of the present study was to develop adjunct strains which can grow in the presence of bacteriocin produced by lacticin 3147-producing starters in fermented products such as cheese. A Lactobacillus paracasei subsp. paracasei strain (DPC5336) was isolated from a well-flavored, commercial cheddar cheese and exposed to increasing concentrations (up to 4,100 arbitrary units [AU]/ml) of lantibiotic lacticin 3147. This approach generated a stable, more-resistant variant of the isolate (DPC5337), which was 32 times less sensitive to lacticin 3147 than DPC5336. The performance of DPC5336 was compared to that of DPC5337 as adjunct cultures in two separate trials using either Lactococcus lactis DPC3147 (a natural producer) or L. lactis DPC4275 (a lacticin 3147-producing transconjugant) as the starter. These lacticin 3147-producing starters were previously shown to control adventitious nonstarter lactic acid bacteria in cheddar cheese. Lacticin 3147 was produced and remained stable during ripening, with levels of either 1,280 or 640 AU/g detected after 6 months of ripening. The more-resistant adjunct culture survived and grew in the presence of the bacteriocin in each trial, reaching levels of 10(7) CFU/g during ripening, in contrast to the sensitive strain, which was present at levels 100- to 1,000-fold lower. Furthermore, randomly amplified polymorphic DNA-PCR was employed to demonstrate that the resistant adjunct strain comprised the dominant microflora in the test cheeses during ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号