首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report an approach using solid phase capturable biotinylated dideoxynucleotides (biotin-ddNTPs) in single base extension for multiplex genotyping by mass spectrometry (MS). In this method, oligonucleotide primers that have different molecular weights and that are specific to the polymorphic sites in the DNA template are extended with biotin-ddNTPs by DNA polymerase to generate 3′-biotinylated DNA products. These products are then captured by streptavidin-coated solid phase magnetic beads, while the unextended primers and other components in the reaction are washed away. The pure extension DNA products are subsequently released from the solid phase and analyzed by matrix-assisted laser desorption/ionization time-of-flight MS. The mass of the extension products is determined using a stable oligonucleotide as a common internal mass standard. Since only the pure extension DNA products are introduced to the MS for analysis, the resulting mass spectrum is free of non-extended primer peaks and their associated dimers, which increases the accuracy and scope of multiplexing in single nucleotide polymorphism (SNP) analysis. The solid phase purification approach also facilitates desalting of the captured oligonucleotides, which is essential for accurate mass measurement by MS. We selected four biotin-ddNTPs with distinct molecular weights to generate extension products that have a 2-fold increase in mass difference compared to that with conventional ddNTPs. This increase in mass difference provides improved resolution and accuracy in detecting heterozygotes in the mass spectrum. Using this method, we simultaneously distinguished six nucleotide variations on synthetic DNA templates mimicking mutations in the p53 gene and two disease-associated SNPs in the human hereditary hemochromatosis gene.  相似文献   

2.
A new method for SNP analysis based on the detection of pyrophosphate (PPi) is demonstrated, which is capable of detecting small allele frequency differences between two DNA pools for genetic association studies other than SNP typing. The method is based on specific primer extension reactions coupled with PPi detection. As the specificity of the primer-directed extension is not enough for quantitative SNP analysis, artificial mismatched bases are introduced into the 3′-terminal regions of the specific primers as a way of improving the switching characteristics of the primer extension reactions. The best position in the primer for such artificial mismatched bases is the third position from the primer 3′-terminus. Contamination with endogenous PPi, which produces a large background signal level in SNP analysis, was removed using PPase to degrade the PPi during the sample preparation process. It is possible to accurately and quantitatively analyze SNPs using a set of primers that correspond to the wild-type and mutant DNA segments. The termini of these primers are at the mutation positions. Various types of SNPs were successfully analyzed. It was possible to very accurately determine SNPs with frequencies as low 0.02. It is very reproducible and the allele frequency difference can be determined. It is accurate enough to detect meaningful genetic differences among pooled DNA samples. The method is sensitive enough to detect 14 amol ssM13 DNA. The proposed method seems very promising in terms of realizing a cost-effective, large-scale human genetic testing system.  相似文献   

3.
A method for single nucleotide polymorphism identification was developed, which was based on the primer extension reaction (PEXT) followed by bioluminescent solid-phase microassay. Recombinant Ca2+-regulated photoprotein obelin and coelenterazine-dependent Renilla muelleri luciferase were used as reporters. The study was performed as an example of SNP genotyping of the human F5 gene encoding human Factor V Leiden polymorphism 1691 G??A (R506Q). Genomic DNA was amplified by PCR using primers flanking polymorphic site of 140 base pairs. PCR products were used as templates for two PEXT reactions using two primers containing 3??-terminal nucleotides, which were complementary to either normal or mutant alleles. If the template and allele-specific primer were completely complementary, the latter was elongated with DNA polymerase. The resulting extension product contained biotin residue due to the presence of biotinylated deoxyuridine triphosphate (B-dUTP) in the reaction mixture. The products were analyzed using obelin-streptavidin conjugates. The optimal PEXT-reaction conditions were found, which ensured a high reliability of SNP genotyping. A new approach to simultaneously revealing both alleles in one well was developed using two bioluminescent reporters. The efficiency of the proposed approach was shown in the study of clinical DNA samples.  相似文献   

4.
Site-directed mutagenesis is a powerful tool to explore the structure-function relationship of proteins, but most traditional methods rely on the mutation of only one site at a time and efficiencies drop drastically when more than three sites are targeted simultaneously. Many applications in functional proteomics and genetic engineering, including codon optimization for heterologous expression, generation of cysteine-less proteins, and alanine-scanning mutagenesis, would greatly benefit from a multiple-site mutagenesis method with high efficiency. Here we describe the development of a simple and rapid method for site-directed mutagenesis of more than 10 sites simultaneously with up to 100% efficiency. The method uses two terminal tailed primers with a unique 25-nucleotide tail each that are simultaneously annealed to template DNA together with the set of mutagenic primers in between. Following synthesis of the mutant strand by primer extension and ligation with T4 DNA polymerase and ligase, the unique mutant strand-specific tails of the terminal primers are used as anchors to specifically amplify the mutant strand by high-fidelity polymerase chain reaction. We have employed this novel method to mutate simultaneously all 9 and 11 CUG leucine codons of the Hyg and Neo resistance genes, respectively, to the Candida albicans-friendly UUG leucine codon at 100% efficiency.  相似文献   

5.
DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by. the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2'-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5'-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

6.

DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2′-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5′-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

7.
Accurate and fast genotyping of single nucleotide polymorphisms (SNPs) is of significant scientific importance for linkage and association studies. We report here an automated fluorescent method we call multiplex automated primer extension analysis (MAPA) that can accurately genotype multiple known SNPs simultaneously. This is achieved by substantially improving a commercially available protocol (SNaPshot). This protocol relies on the extension of a primer that ends one nucleotide 5'of a given SNP with fluorescent dideoxy-NTPs (minisequencing), followed by analysis on an ABI PRisMS 377 Semi-Automated DNA Sequencer Our modification works by multiplexing the initial reaction that produces the DNA template for primer extension and/or multiplexing several primers (corresponding to several SNPs) in the same primer extension reaction. Then, we run each multiplexed reaction on a single gel lane. We demonstrate that MAPA can be used to genotype up to four SNPs simultaneously, even in compound heterozygote samples, with complete accuracy (based on concordance with sequencing results). We also show that primer design, unlike the DNA template purification method, can significantly affect genotyping accuracy, and we suggest useful guidelines for quick optimization.  相似文献   

8.
The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer-extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by exo(+) DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.  相似文献   

9.
We have developed a method for parallel independent on-chip amplification and the following sequence variation analysis of multiple DNA regions directly using microchip with an array of nanoliter gel pads containing specific sets of tethered primers. The method has three key features. First, DNA to be amplified is enriched at gel pads by its hybridization with immobilized primers. Second, different sets of specific primers are immobilized within various gel pads, and primers are detached within gel pads just before polymerase chain reaction to enhance the amplification. A gel pad may contain an additional permanently immobilized dormant primer that is activated to carry out the allele-specific primer extension reaction to detect mutations. Third, multiple polymerase chain reactions are confined within nanoliter gel pads covered and separated from each other with mineral oil. The method was applied to simultaneously identify several abundant drug-resistant mutations in three genes of Mycobacterium tuberculosis.  相似文献   

10.
Previously, we established the feasibility of using solid phase capturable (SPC) dideoxynucleotides to generate single base extension (SBE) products which were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for multiplex genotyping, an approach that we refer to as SPC-SBE. We report here the expanding of the SPC-SBE method as a single-tube assay to simultaneously detect 20 single nucleotide variations in a model system and 3 single nucleotide polymorphisms (SNPs) in the human beta2-adrenergic receptor (beta2AR) gene. Twenty primers were designed to have a sufficient mass difference between all extension products for accurate detection of nucleotide variants of the synthetic templates related to the p53 gene. These primers were extended simultaneously in a single tube with biotin-ddNTPs to generate 3(')-biotinylated DNA products, which were first captured by streptavidin-coated magnetic beads and then released from the beads and analyzed with MALDI-TOF MS. This approach generates a mass spectrum free of primer peaks and their associated dimers, increasing the scope of multiplexing SNPs. We also simultaneously genotyped 3 SNPs in the beta2AR gene (5(')LC-Cys19Arg, Gly16Arg, and Gln27Glu) from the genomic DNA of 20 individuals. Comparison of this approach with direct sequencing and the restriction fragment length polymorphism method indicated that the SPC-SBE method is superior for detecting nucleotide variations at known SNP sites.  相似文献   

11.
The precise mapping and quantification of DNA methylation as an epigenetic parameter during development and in diseased tissues is of great importance for functional genomics. Here we describe a rapid, quantitative method to assess methylation levels at specific CpG sites using PCR products of bisulfite-treated genomic DNA. Using single nucleotide primer extension (SNuPE) assays in combination with ion pair reverse phase high performance liquid chromatography (IP RP HPLC) separation techniques, methylated and unmethylated CpGs can be discriminated and quantified based on the different masses and hydrophobicities of the extended primer products. The assay is linear, highly reproducible and several sites can be measured simultaneously in one reaction. It can be semi-automated and eliminates the need for cloning and sequencing of individual bisulfite PCR products.  相似文献   

12.
It is generally accepted that an aphidicolin-sensitive DNA polymerase elongates the eucaryotic RNA primer (iRNA) into a mature Okazaki piece reaching ca. 200 nucleotides. Yet, as shown here, nascent DNA chains below 40 nucleotides accumulated in simian virus 40 (SV40) DNA replicating in isolated nuclei in the presence of aphidicolin. These products resembled precursors of longer Okazaki pieces synthesized in the absence of aphidicolin (termed here DNA primers) in size distribution, lagging-replication-fork polarity, and content of iRNA. Within the isolated SV40 replicative intermediate, DNA primers could be extended in a reaction catalyzed by the Escherichia coli DNA polymerase I large fragment. This increased their length by an average of 21 deoxyribonucleotide residues, indicating that single-stranded gaps of corresponding length existed 3' to the DNA primers. Incubation with T4 DNA ligase converted most of the extended DNA primers into products resembling long Okazaki pieces. These data led us to propose that the synthesis of an SV40 Okazaki piece could be itself discontinuous and could comprise the following steps: (i) iRNA synthesis by DNA primase, (ii) iRNA extension into a DNA primer by an aphidicolin-resistant activity associated with DNA primase-DNA polymerase alpha, (iii) removal of iRNA moieties between adjacent DNA primers, (iv) "gap filling" between DNA primers by the aphidicolin-sensitive DNA polymerase alpha, and (v) ligation of DNA primer units onto a growing Okazaki piece. Eventually, a mature Okazaki piece is ligated onto a longer nascent DNA chain.  相似文献   

13.
The yeast DNA primase-DNA polymerase activities catalyze de novo oligoribonucleotide primed DNA synthesis on single-stranded DNA templates (Singh, H., and Dumas, L. B. (1984) J. Biol. Chem. 259, 7936-7940). In the presence of ATP substrate and poly(dT) template, the enzyme preparation synthesizes discrete-length oligoribonucleotides (apparent length 8-12) and multiples thereof. The unit length primers are the products of de novo processive synthesis and are precursors to the synthesis of the multimers. Multimeric length oligoribonucleotides are not generated by continuous processive extension of the de novo synthesis products, however, nor do they arise by ligation of unit length oligomers. Instead, dissociation and rebinding of a factor, possibly the DNA primase, results in processive extension of the RNA synthesis products by an additional modal length. Thus, catalysis by the yeast DNA primase can be viewed as repeated cycles of processive unit length RNA chain extension. Inclusion of dATP substrate results in three distinct transitions: (i) coupling of RNA priming to DNA synthesis, (ii) suppression of multimer RNA synthesis, and (iii) attenuation of primer length. The less than unit length RNA primers appear to result from premature DNA chain extension, not degradation from either end of the unit length primer. We discuss possible roles of DNA polymerase and DNA primase in RNA primer attenuation.  相似文献   

14.
Cross-contamination with previously amplified products poses a serious limitation in the use of PCR for clinical testing and in certain research applications as well. In the present study we report the use of novel primers containing a 3'-terminal ribose residue to circumvent this problem. Extension of the primer by Taq DNA polymerase generates a cleavable ribonucleotide linkage within the amplified product. Cleavage of the primer by base or with a ribonuclease interferes with further replication of the product should carry over to another sample occur. Primers terminating in any of the 4 ribose residues function equally well as all DNA primers. Taq DNA polymerase is thus able to both efficiently extend and copy the single ribose residue. In translating from all DNA primers to ones containing a 3'-ribose residue no modification of the PCR protocol is required. The products formed can be used in all applications of the PCR. Since neither the original sample DNA, the primers or the extension products are modified by base or ribonuclease treatment both pre- and post-amplification sterilization can be carried out. Pre-amplification treatment with RNase A can yield as high as 10(4)-fold sterilization. Under these conditions the addition of beta-mercaptoethanol or other sulfhydryl reducing agent is necessary to inactivate the enzyme during thermocycling. Post-amplification treatment with NaOH readily yields at least 10(6)-fold sterilization. This alone is sufficient for most, if not all, applications of PCR. It is especially useful for quantitative RT-PCR, since the original target RNA sequence, which may be present in high copy numbers, is also destroyed.  相似文献   

15.
A method, termed hierarchical oligonucleotide primer extension (HOPE), is developed for quantitative, multiplexing detection of DNA targets present in PCR-amplified community 16S rRNA genes. It involves strand extension reaction and multiple oligonucleotide primers modified with different lengths of polyA at the 5′ end and targeting 16S rRNA genes at different phylogenetic specificities. On annealing to the targets, these primers are extended with a single fluorescently labeled dideoxynucleoside triphosphate or a dye-terminator. Using a DNA autosequencer, these extended primers are separated and identified by size and dye color, and quantified and normalized based on the fluorescence intensities and internal size standards. Using a primer-to-target ratio >1000, constant primer extension efficiencies can be obtained with individual primers to establish a ‘calibration factor’ between individual primers and a universal or domain-specific primer, providing the relative abundance of targeted rRNA genes with respect to total rRNA genes. HOPE up to 10-plexing is demonstrated to correctly identify 20 different bacterial strains, and quantify different Bacteroides spp. in 16S rRNA gene amplicons from different model bacteria mixtures and the influent and effluent of a wastewater treatment plant. Single mismatch discrimination with detection sensitivity of a target down to 0.01–0.05% of total DNA template is achieved.  相似文献   

16.
A non-gel-based quantification assay based on competitive PCR and bioluminometric detection has been developed. Samples containing human immunodeficiency virus type 1 (HIV-1) DNA and three quantitative standards at discrete concentrations were coamplified by PCR with primers annealing in the polymerase gene region. The quantitative standards contained the same primer binding sequences and had the same amplicon length as the wild-type DNA, but differed in an internal homopolymeric stretch (A, C, or T) over three base pairs. The PCR products were captured onto a solid support and treated with NaOH to separate the strands. Discrimination between the wild-type DNA and the three quantitative standard amplicons was achieved on the solid support by four parallel extension reactions with 3'-end specific primers. Inorganic pyrophosphate (PPi) released as a result of successful extension was converted to ATP by ATP sulfurylase and the level of ATP was sensed by firefly luciferase, generating a proportional amount of visible light which was detected by a luminometer. Here, we show that the obtained calibration curves, using the signal intensities of the three quantitative standards, enabled determination of the amount of target HIV-1 DNA.  相似文献   

17.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

18.
DNA templates harboring specific single nucleotide polymorphism (SNP) sites are largely needed as positive controls in practical SNP analysis and in determination of the reliability of newly developed methods in high-throughput screening assays. Here we report a one-step method to produce SNP templates by amplifying a wild-type sequence with primers having single nucleotide mismatches at or near their 3′ ends. A short amplicon harboring an EcoRI site was used to evaluate the feasibility of our strategy. Perfectly matched primers and primers with a single base mismatch occurring from the first base to the sixth base of the EcoRI site were used for primer extension. By using polymerase without a proofreading function, we kept mismatched nucleotides from occurring in extended primer products, as confirmed by EcoRI digestion and sequencing analysis. The strategy of using primers with a single mismatched base and exo- polymerase was shown to be an efficient one-step method for preparing SNP templates, either for application in the development of SNP screening assays or as positive controls in practical SNP assays.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号