首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Accurate and fast genotyping of single nucleotide polymorphisms (SNPs) is of significant scientific importance for linkage and association studies. We report here an automated fluorescent method we call multiplex automated primer extension analysis (MAPA) that can accurately genotype multiple known SNPs simultaneously. This is achieved by substantially improving a commercially available protocol (SNaPshot). This protocol relies on the extension of a primer that ends one nucleotide 5'of a given SNP with fluorescent dideoxy-NTPs (minisequencing), followed by analysis on an ABI PRisMS 377 Semi-Automated DNA Sequencer Our modification works by multiplexing the initial reaction that produces the DNA template for primer extension and/or multiplexing several primers (corresponding to several SNPs) in the same primer extension reaction. Then, we run each multiplexed reaction on a single gel lane. We demonstrate that MAPA can be used to genotype up to four SNPs simultaneously, even in compound heterozygote samples, with complete accuracy (based on concordance with sequencing results). We also show that primer design, unlike the DNA template purification method, can significantly affect genotyping accuracy, and we suggest useful guidelines for quick optimization.  相似文献   

2.
Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) is a technique that can be used for rapid quantitation of methylation at individual CpG sites. Treatment of genomic DNA with sodium bisulfite is used to convert unmethylated Cytosine to Uracil while leaving 5-methylcytosine unaltered. Strand-specific PCR is performed to generate a DNA template for quantitative methylation analysis using Ms-SNuPE. SNuPE is then performed with oligonucleotide(s) designed to hybridize immediately upstream of the CpG site(s) being interrogated. Reaction products are electrophoresed on polyacrylamide gels for visualization and quantitation by phosphorimage analysis. The Ms-SNuPE technique is similar to other quantitative assays that use bisulfite treatment of genomic DNA to discriminate unmethylated from methylated Cytosines (i.e., COBRA, pyrosequencing). Ms-SNuPE can be used for high-throughput methylation analysis and rapid quantitation of Cytosine methylation suitable for a wide range of biological investigations, such as checking aberrant methylation changes during tumorigenesis, monitoring methylation changes induced by DNA methylation inhibitors or for measuring hemimethylation. Approximately two to four CpG sites can be interrogated in up to 40 samples by Ms-SNuPE in less than 5 h, after PCR amplification of the desired target sequence and preparation of PCR amplicons.  相似文献   

3.
The technology and application of arrayed primer extension (APEX) is presented. We describe an integrated system with DNA chip and template preparation, multiplex primer extension on the array, fluorescence imaging, and data analysis. The method is based upon an array of oligonucleotides, immobilized via the 5' end on a glass surface. A patient DNA is amplified by PCR, digested enzymatically, and annealed to the immobilized primers, which promote sites for template-dependent DNA polymerase extension reactions using four unique fluorescently labeled dideoxy nucleotides. A mutation is detected by a change in the color code of the primer sites. The technology was applied to the analysis of 10 common beta-thalassemia mutations. Nine patient DNA samples, each of which carries a different mutation, and four wild-type DNA samples were correctly identified. The signal-to-noise ratio of this technology is, on the average, 40:1, which enables the identification of heterozygous mutations with a high confidence level. The APEX method can be applied to any DNA target for efficient analysis of mutations and polymorphisms.  相似文献   

4.
《Free radical research》2013,47(4):565-576
Abstract

The study of Alzheimer's disease neuropathology has been intimately associated with the field of oxidative stress for nearly 20 years. Indeed, increased markers of oxidative stress have been associated with this neurodegenerative condition, resulting from oxidation of lipids, proteins and nucleic acids. Increased nuclear and mitochondrial DNA oxidation are observed in Alzheimer's disease, stemming from increased reactive oxygen species attack to DNA bases and from the impairment of DNA repair mechanisms. Moreover, mitochondrial DNA is found to be more extensively oxidized than nuclear DNA. This review is intended to summarizes the most important cellular reactive oxygen species producers and how mitochondrial dysfunction, redox-active metals dyshomeostasis and NADPH oxidases contribute to increased oxidative stress in Alzheimer's disease. A summary of the antioxidant system malfunction will also be provided. Moreover, we will highlight the mechanisms of DNA oxidation and repair. Importantly, we will discuss evidence relating the DNA repair machinery and accumulated DNA oxidation with Alzheimer's disease.  相似文献   

5.
Identification of nucleotides used for RNA chain initiation or for contacting DNA binding proteins is basic to our understanding of gene regulation. Normally, a radioactive primer is used to copy RNA or DNA. The polymerase extension stops at free ends of mRNA (as in promoter mapping) or at the position of template cleavage or modification (as in footprinting). The locations of these positions are then analyzed by polyacrylamide gel electrophoresis. These analyses have been improved using fluorescently labeled primers and commonly available DNA sequencing machines. The protocol, which we call fluorescently labeled oligonucleotide extension (FLOE), eliminates the need for handling radioactivity and polyacrylamide. The DNA sequencer delivers data as a "trace" that is ready for quantification, which eliminates the need to trace gels separately. The data analysis is further improved by new software, Scanalyze, which we present here. We demonstrate that by using promoter mapping and footprinting, FLOE shortens experimental time, extends the stretch of analyzable sequence, and simplifies quantification compared to radioactive methods and is as sensitive in terms of detecting templates.  相似文献   

6.
The study of Alzheimer's disease neuropathology has been intimately associated with the field of oxidative stress for nearly 20 years. Indeed, increased markers of oxidative stress have been associated with this neurodegenerative condition, resulting from oxidation of lipids, proteins and nucleic acids. Increased nuclear and mitochondrial DNA oxidation are observed in Alzheimer's disease, stemming from increased reactive oxygen species attack to DNA bases and from the impairment of DNA repair mechanisms. Moreover, mitochondrial DNA is found to be more extensively oxidized than nuclear DNA. This review is intended to summarizes the most important cellular reactive oxygen species producers and how mitochondrial dysfunction, redox-active metals dyshomeostasis and NADPH oxidases contribute to increased oxidative stress in Alzheimer's disease. A summary of the antioxidant system malfunction will also be provided. Moreover, we will highlight the mechanisms of DNA oxidation and repair. Importantly, we will discuss evidence relating the DNA repair machinery and accumulated DNA oxidation with Alzheimer's disease.  相似文献   

7.
Probes were cloned, characterized, and developed for all regions of the mitochondrial DNA (mtDNA) of pejerrey Odontesthes bonariensis to provide the basis for the study of genetic diversity of South American atherinopsinii and to enable species identification from small amounts of tissue. The mtDNA was extracted from liver and cleaved with Eco RI, producing four fragments (7.4, 3.4, 3.1 and 2.9 kb) which were cloned using pUC118 plasmid vectors. Sequence analysis from both ends of the fragments showed that they encode tRNA (Asp, Phe, and Ser-TGA), 12 S rRNA, cytochrome oxidase (CO) II, NADH 4, 5, and 6, and the D-loop, and that the relative positions of these genes are identical to those in the mtDNA of other teleosts. A comparison of homology with carp mtDNA nucleotide sequences revealed that tRNA (Phe and Ser-TGA) and CO II were relatively conserved, whereas the D-loop region was highly divergent. The cloned mtDNA probes detected mtDNA fragments from about 800 ng of total DNA extracted from liver, muscle, and single embryos of O. bonariensis , and were effective for restriction length fragment polymorphism (RFLP) analysis of Patagonina hatcheri , the most distant atherinopsine relative of pejerrey. The cloned mtDNA probes may be useful for the analysis of genetic diversity and non-destructive species identification, including the examination of eggs, larvae and juveniles. The mtDNA sequences reported here provide the basis for the design of primers for PCR-based RFLP analysis.  相似文献   

8.
In this report we describe a simple and rapid protocol for reliable quantitation of mitochondrial DNA (mtDNA) mutations, which is basically a modification of the traditional polymerase chain reaction (PCR)/restriction fragment length polymorphism (RFLP) analysis technique. Up to now, the PCR/RFLP method has been of limited use for the accurate determination of ratios of mutant and wild type molecules, largely owing to the formation of heteroduplex molecules by PCR and incompleteness of restriction digestion. In order to overcome this problem, we have introduced a single-step primer extension reaction using Vent(R)(exo-) DNA polymerase and a fluorescence-labeled primer to the standard assay. The labeled homoduplex molecules are then digested with a restriction endonuclease, and the nucleic acids fractionated on an automated DNA sequencer equipped with GENESCAN analysis software. The amount of mutant mtDNA is readily estimated from fluorescence intensities of the wild-type and mutant mtDNA fragments corrected for incomplete digestion as monitored by a homologous control fragment. The accuracy of the improved protocol was determined by constructing standard curves obtained from defined mixtures of genomic DNA containing homoplasmic wild-type and mutant mtDNA. The expected values were obtained, with an observed correlation coefficient of 0.997 and a typical variability of +/-5% between repeated measurements. Further validation of the protocol is provided by the screening of five patients and unaffected subjects carrying the guanine to adenine transition at the nucleotide 3460 of the mitochondrial genome responsible for the mitochondrial disorder of Leber's hereditary optic neuropathy.  相似文献   

9.
Segregation of mitochondrial DNA (mtDNA) is an important underlying pathogenic factor in mtDNA mutation accumulation in mitochondrial diseases and aging, but the molecular mechanisms of mtDNA segregation are elusive. Lack of high-throughput single-cell mutation load assays lies at the root of the paucity of studies in which, at the single-cell level, mitotic mtDNA segregation patterns have been analyzed. Here we describe development of a novel fluorescence-based, non-gel PCR restriction fragment length polymorphism method for single-cell A3243G mtDNA mutation load measurement. Results correlated very well with a quantitative in situ Padlock/rolling circle amplification-based genotyping method. In view of the throughput and accuracy of both methods for single-cell A3243G mtDNA mutation load determination, we conclude that they are well suited for segregation analysis.  相似文献   

10.
Lee CI  Leong SH  Png AE  Choo KW  Syn C  Lim DT  Law HY  Kon OL 《Nature protocols》2006,1(5):2185-2194
We describe a protocol that uses a bioinformatically optimized primer in an isothermal whole genome amplification (WGA) reaction. Overnight incubation at 37 degrees C efficiently generates several hundred- to several thousand-fold increases in input DNA. The amplified product retains reasonably faithful quantitative representation of unamplified whole genomic DNA (gDNA). We provide protocols for applying this isothermal primer extension WGA protocol in three different techniques of genomic analysis: comparative genomic hybridization (CGH), genotyping at simple tandem repeat (STR) loci and screening for single base mutations in a common monogenic disorder, beta-thalassemia. gDNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues can also be amplified with this protocol.  相似文献   

11.
Increasing evidence suggests that oxidative stress is associated with normal aging and several neurodegenerative diseases, including Alzheimer's disease (AD). Here we quantified multiple oxidized bases in nuclear and mitochondrial DNA of frontal, parietal, and temporal lobes and cerebellum from short postmortem interval AD brain and age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM) and stable labeled internal standards. Nuclear and mitochondrial DNA were extracted from eight AD and eight age-matched control subjects. We found that levels of multiple oxidized bases in AD brain specimens were significantly (p < 0.05) higher in frontal, parietal, and temporal lobes compared to control subjects and that mitochondrial DNA had approximately 10-fold higher levels of oxidized bases than nuclear DNA. These data are consistent with higher levels of oxidative stress in mitochondria. Eight-hydroxyguanine, a widely studied biomarker of DNA damage, was approximately 10-fold higher than other oxidized base adducts in both AD and control subjects. DNA from temporal lobe showed the most oxidative damage, whereas cerebellum was only slightly affected in AD brains. These results suggest that oxidative damage to mitochondrial DNA may contribute to the neurodegeneration of AD.  相似文献   

12.
A mathematical model is proposed for processive primer extension by eukaryotic DNA primase. The model uses available experimental data to predict rate constants for the dynamic behavior of primase activity as a function of NTP concentration. The model also predicts some data such as the binding affinities of the primase for the DNA template and for the RNA primer.  相似文献   

13.
14.
15.
16.
Mutations in the tumor suppressor gene TP53 are associated with a wide range of different cancers and may have prognostic and therapeutic implications. Methods for rapid and sensitive detection of mutations in this gene are therefore required. In order to make screening more effective, a commercially available TP53 genotyping microarray from Asper Biotech has been constructed by arrayed primer extension (APEX). The present study is the first report that blindly evaluates the efficiency of the second generation APEX TP53 genotype chip outside the Asper laboratory and compares it to temporal temperature gradient electrophoresis (TTGE) and sequencing of TP53 for mutation detection in ovarian and breast cancer samples. All nucleotides in the TP53 gene from exon 2-9 are included on the chip by synthesis and application of sequence-specific oligonucleotides. The chip was validated by screening 48 breast and 11 ovarian cancer cases, all of which had previously been analyzed by TTGE and sequencing. APEX scored 17 of 20 sequence variants, missing one deletion, one insertion, and a missense mutation. Resequencing efficiency using APEX was 92% for both DNA strands and 99.5% for sense and/or antisense strand. We conclude that the APEX TP53 microarray is a robust, rapid, and comprehensive screening tool for sequence alterations in tumors.  相似文献   

17.
Polyacrylamide gel electrophoresis of DNA fragments obtained by the polymerase chain reaction using Taq polymerase revealed the presence of multiple fragments shorter than the expected product. These abortive extension products were observed even when analysis by agarose gel electrophoresis showed only a single band. The production of prematurely terminated fragments can be exploited for the sequencing of PCR products if phosphorothioate groups are incorporated base specifically during the reaction in the presence of two oligonucleotide primers, one of which is 5'-32P-labeled. The addition of snake venom phosphodiesterase to the reaction mixture after completion of the amplification cycles digests each fragment from the 3'-end to a phosphorothioate group so that the sequence can be read by polyacrylamide gel electrophoresis.  相似文献   

18.
Rapid and quantitative method of allele-specific DNA methylation analysis   总被引:2,自引:0,他引:2  
Several biological phenomena depend on differential methylation of chromosomal strands. While understanding the role of these processes requires information on allele-specific methylation, the available methodologies are not quantitative or labor-intensive. We describe a novel, rapid method to quantitate allele-specific DNA methylation based on the combination of bisulfite PCR and Pyrosequencing. In this method, DNA is first treated with sodium bisulfite, which converts cytosine but not 5-methylcytosine to uracil. Genes of interest are subsequently amplified using PCR. Allele-specific methylation can then be determined by pyrosequencing each allele individually using sequencing primers that incorporate single nucleotide polymorphisms (SNPs) that allow differentiation between the two parental alleles. This allele-specific methylation methodology can potentially afford quantitative analyses relevant to the regulation of X chromosome inactivation, allele-specific expression of genes in the immune system, repetitive elements, and genomic imprinting. As an illustration of our new method, we quantitated allele-specific methylation of the differentially methylated region of the H19 gene, which is imprinted. Although we could reliably determine allele-specific methylation with our technique, additional studies will be required to confirm the ability of our assay to measure loss of imprinting.  相似文献   

19.
A recent report by Petruzzella et al. (BBRC 186, 491-497, 1992) raised a question as to whether a point mutation in the mitochondrial ND2 gene (BBRC 182, 238-246, 1992) is relevant to Alzheimer's disease. The argument was based on their inability to detect the point mutation at position 5460 in codon 331 in the DNAs extracted from 15 patients with Alzheimer's disease using mispairing PCR-RFLP. To clarify the discrepancy, we tested the DNAs reported by Petruzzella et al. for the mutation by single-nucleotide primer extension. The present work confirms our previous report and extends our finding of the point mutation in 8 of the 15 AD DNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号