首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of cell attachment of the anchorage-dependent mammalian cell line Vero to the gelatin-based macroporous microcarrier Cultispher-G were determined under various conditions. An optimal rate of attachment (0.98 x 10(-2) min(-1)) occurred by an intermittent stirring regimen of 3 min stirring at 40 rpm per 33 min. This stirring regimen appeared to maximize cell-to-bead attachment and minimized cell aggregation which occurred at a broadly comparable rate.A further increase in the rate of cell-to-bead attachment occurred by preincubation of the microcarriers in serum-supplemented medium prior to cell inoculation in a serum-free medium. However, serum supplementation (>5%) was required for maximal cell growth. The pH of the medium had little effect on cell attachment over a broad range (pH 7.1-8.0). An initial cell/bead inoculum of 30 ensured an even distribution of cells on the available microcarriers with a low proportion of unoccupied beads.The rate of cell attachment to Cultispher-G was an order of magnitude lower than the determined value for the charged dextran microcarrier Cytodex-1, which was measured as 9.05 x 10(-2) min(-1). The optimal conditions for cell attachment were significantly different for the two bead types. Cell attachment to the electrostatic surface of the Cytodex-1 microcarriers was highly dependent on pH and serum supplementation. Cell aggregation during attachment to the Cytodex-1 microcarriers was minimal because of the higher rate of cell-microcarrier attachment.The porous nature of the Cultispher-G microcarriers allowed a maximum cell/bead loading of >1400, which was at least 3 times higher than equivalent loading of the cells on Cytodex-1. The Cultispher-G matrix also allowed the use of higher agitation rates (up to 100 rpm) in spinner flasks without affecting the cell growth rate or maximum cell density. (c) 1996 John Wiley & Sons, Inc.  相似文献   

2.
A cellular automaton model for microcarrier cultures   总被引:2,自引:0,他引:2  
In order to achieve high cell densities anchoragedependent cells are commonly cultured on microcarriers, where spatial restrictions to cell growth complicates the determination of the growth kinetics. To design and operate large-scale bioreactors for microcarrier cultures, the effect of this spatial restriction to growth, referred to as contact inhibition, must be decoupled from the growth kinetics. In this article, a cellular automaton approach is recommended to model the growth of anchorage-dependent cells on microcarriers. The proposed model is simple to apply yet provides an accurate representation of contact-inhibited cell growth on microcarriers. The distribution of the number of neighboring cells per cell, microcarrier surface areas, and inoculation densities are taken into account with this model. When compared with experimental data for Vero and MRC-5 microcarrier cultures, the cellular automaton predictions were very good. Furthermore, the model can be used to generate contact-inhibition growth curves to decouple the effect of contact-inhibition from growth kinetics. With this information, the accurate determination of kinetic parameters, such as nutrient uptake rates, and the effects of other environmental factors, such as toxin levels, may be determined. (c) 1994 John Wiley & Sons, Inc.  相似文献   

3.
Summary The cell culture on serum-coated microcarriers yielded higher efficiency of cell attachment to microcarriers and more favorable initial cell distribution on microcarriers than on the conventional microcarriers. By employing serum-coated microcarriers, the maximum cell density was increased by 46% in low serum medium and by 30% in 10% (v/v) serum-supplemented medium. Serum coating of microcarriers could provide cell attachment factors and may replace costly attachment factors supplemented in low serum medium and serum-free medium.  相似文献   

4.
Growth of Fish Cell Lines on Microcarriers   总被引:1,自引:1,他引:0       下载免费PDF全文
Microcarrier beads were evaluated as substrates for the propagation of five anchorage-dependent fish cell lines. Growth of rainbow trout gonad (RTG-2) and Atlantic salmon cells was limited on microcarriers maintained in suspension. However, stationary microcarriers were suitable substrates for the growth of RTG-2, AS, Chinook salmon embryo (CHSE-214), and fathead minnow cells. Cell yields ranged from 2 × 106 to 2.9 × 106 cells per ml, representing 7- to 10-fold increases over the initial cell concentrations. The yield of new RTG-2 cells per unit volume of growth medium was 2.8 times greater in microcarrier cultures than in standard monolayer cultures. Northern pike cells failed to grow on microcarriers. Yields of infectious pancreatic necrosis virus propagated in microcarrier cultures of RTG-2 cells were more than twice the yields in standard monolayer cultures. The greater economy of microcarrier cultures in terms of growth vessel and medium requirements holds great promise for the large-scale production of anchorage-dependent fish cell cultures and fish viruses.  相似文献   

5.
For the cultivation of mammalian cells on microcarriers a minimum inoculum concentration is required to initiate cell attachment and subsequent cell growth. A critical cell number model has been proposed to elucidate the mechanism of the inoculum requirement. In this model it was hypothesized that after inoculation a critical number of cells per microcarrier is required for normal growth to occur; failure to acquire enough cells will impede cell growth. This critical cell number model was expressed mathematically and used to simulate cell distribution and growth on microcarriers under different cultivation conditions. By comparing the simulated growth kinetics with the experimental results, the actual critical cell number per microcarrier was identified. The critical number could be reduced by employing an improved medium for the cultivation.  相似文献   

6.
Only a decade after Van Wezel introduced the first product made in microcarrier cultures on industrial scale at economically acceptable costs, namely Inactivated Polio Vaccine (IPV), interest was taken in this revolutionary type of cell growth system. The basic idea was to develop a culture system with equal potentials for control of environmental culture conditions and scaling up as the systems used in industrial microbiology. Although initially only positively-charged beads were used it soon became clear that negatively-charged or amphoteric materials such as proteins or amino acids polymerized to the surface were equally useful. Eventually numerous different types of microcarrier were developed. The second generation of microcarriers consisted of macroporous beads providing increased surface area for cell attachment and growth by external and interior space. Such microcarriers offer great potential for high cell densities and enhanced productivity for certain production systems, especially recombinant CHO-cells. These carriers, which not only provide possibilities for anchorage-dependent cells but also for cells growing suspension, can be used in homogeneous bioreactors as well as in fluidized or fixed-bed systems. Despite considerable in vestments and research on the development and improvement of microcarriers one question is still open: is microcarrier technology still in its infancy or is it full-grown and is the basic idea relized? In this paper a general overview will be given of the present state of microcarrier technology and also of its perspectives.  相似文献   

7.
To describe the growth behavior of anchorage-dependent mammalian cells in microcarrier systems, various approaches comprising deterministic and stochastic single cell models as well as automaton-based models have been presented in the past. The growth restriction of these often contact-inhibited cells by spatial effects is described at levels with different complexity but for the most part not taking into account their metabolic background. Compared to suspension cell lines these cells have a comparatively long lag phase required for attachment and start of proliferation on the microcarrier. After an initial phase of exponential growth only a moderate specific growth rate is achieved due to restrictions in space available for cell growth, limiting medium components, and accumulation of growth inhibitors. Here, a basic deterministic unstructured segregated cell model for growth of Madin Darby Canine Kidney (MDCK) cells used in influenza vaccine production is described. Four classes of cells are considered: cells on microcarriers, cells in suspension, dead cells, and lysed cells. Based on experimental data, cell attachment and detachment is taken explicitly into account. The model allows simulation of the overall growth behavior in microcarrier culture, including the lag phase. In addition, it describes the time course of uptake and release of key metabolites and the identification of parameters relevant for the design and optimization of vaccine manufacturing processes.  相似文献   

8.
Microcarriers are synthetic particles used in bioreactor-based cell manufacturing of anchorage-dependent cells to promote proliferation at efficient physical volumes, mainly by increasing the surface area-to-volume ratio. Mesenchymal stromal cells (MSCs) are adherent cells that are used for numerous clinical trials of autologous and allogeneic cell therapy, thus requiring avenues for large-scale cell production at efficiently low volumes and cost. Here, a dissolvable gelatin-based microcarrier is developed for MSC expansion. This novel microcarrier shows comparable cell attachment efficiency and proliferation rate when compared to several commercial microcarriers, but with higher harvesting yield due to the direct dissolution of microcarrier particles and thus reduced cell loss at the cell harvesting step. Furthermore, gene expression and in vitro differentiation suggest that MSCs cultured on gelatin microcarriers maintain trilineage differentiation with similar adipogenic differentiation efficiency and higher chondrogenic and osteogenic differentiation efficiency when compared to MSCs cultured on 2D planar polystyrene tissue culture flask; on the contrary, MSCs cultured on conventional microcarriers appear to be bipotent along osteochondral lineages whereby adipogenic differentiation potential is impeded. These results suggest that these gelatin microcarriers are suitable for MSC culture and expansion, and can also potentially be extended for other types of anchorage-dependent cells.  相似文献   

9.
For the large-scale operation of microcarrier culture to be successful, a technically feasible method for sequential inoculation is essential. Using human foreskin fibroblasts, FS-4, we have achieved this by detaching cells viably from microcarriers employing a selection pH trypsinization technique. Cells thus detached are able to reattach to microcarriers and grow normally after subsequent reinoculation into new cultures. However, after reinoculation cells attach to new microcarriers at a higher rate than to used microcarriers on which cells have previously grown. The effect of this differential cell attachment was analyzed and overcome by employing a low inoculum concentration. FS-4 cells could thus be serially propagated on microcarriers and subsequently used for beta-interferon production. This technique has also been applied to the cultivation of a monkey kidney cell line, Vero. We have also shown that Vero cells directly inoculated from a seed microcarrier culture could be used for virus production.  相似文献   

10.
Kwon YJ  Peng CA 《BioTechniques》2002,33(1):212-4, 216, 218
Valuable products obtainedfrom the cultivation of anchorage-dependent mammalian cells require large-scale processes to obtain commercially useful quantities. It is generally accepted that suspension culture is the ideal mode of operation. Because anchorage-dependent cells need surfaces to be able to attach and spread, the incorporation of microcarriers to suspension culture is indispensable. Since the dextran-based microcarrier wasfirst introduced, many different types of microcarriers have been developed and commercialized. In this study, alginate-based microcarriers were made in the following order: (i) calcium-alginate gel beads prepared by dropping a blend of sodium alginate and propylene glycol alginate (PGA) into calcium chloride solution, (ii) the PGA section of gel beads cross-linked with gelatin in alkaline solution (i.e., via the transacylation reaction between the ester group of PGA and amino group of gelatin), and (iii) gelatin membrane around the beads further cross-linked by glutaraldehyde. The glutaraldehyde-treated gelatintransacylated PGA/alginate microcarrier showed superior features in high stability under phosphate-containing solution, density close to that of culture medium, and transparency. Moreover, the Chinese hamster ovary CHO-KI and amphotropic retrovirus producer PA317 cells cultivated on the newly synthesized microcarriers exhibited similar growth kinetics of these two types of cell lines cultured on commercial polystyrene microcarriers. However, cell morphology was easily monitored on the transparent microcarriers made in this study.  相似文献   

11.
The ability to serially propagate mammalian cells in microcarrier cultures is essential for large-scale operation. The success of such serial propagation depends on viable dissociation of cells from microcarriers and the normal growth and product formation after subsequent reinoculation. The high pH treatment developed for dissociating cells from DEAE-derivatized microcarriers was not as effective for a number of cell strains cultivated on gelatin-coated microcarriers. By prewashing the cell-laden microcarriers with buffer containing a chelating agent, bovine kidney cells, BK, human embryonic foreskin fibroblasts, FS-4, and continuous human kidney cells, TCL-598 which produces prourokinase, were viably dissociated from commercially available gelatin-coated microcarriers, Cytodex-3. Cells dissociated from microcarriers reattached and grew on micro-carriers subsequent to inoculation into subcultures. However, after subculturing, cells may attach at different rates to newly added beads and to conditioned microcarriers which cells had previously grown. It resulted in an uneven cell distribution on microcarriers and inferior growth kinetics. This effect was more profound for BK and FS-4 cells which are propagated with a low multiplication ratio. Specifically, BK cells attach to conditioned beads at a faster rate than to new beads, while FS-4 cells attach to new beads faster than to conditioned beads. Thus, for these two cell strains, a separator was used to separate the microcarriers from the suspension of dissociated cells before subsequent inoculation. For TCL-598 cells, which are propagated at a high multiplication ratio, this dissociation technique can be applied directly without the separation of dissociated cells and conditioned microcarriers. All the three cell lines tested exhibit normal growth kinetics in serial propagation on microcarriers. Furthermore, the production of prourokinase by TCL598 cells serially propagated on microcarriers was comparable to that inoculated from roller bottles.  相似文献   

12.
It is commonly considered not desirable to use microcarriers more than once in the cultivation of anchorage-dependent animal cells. However, our experiment contradicts this belief. The collagen-coated microcarriers, Cytodex-3, from a batch culture of Vero cells, were collected, cooled to 4, agitated in basic phosphate-buffered solution to detach the cells, and then fully washed to remove the cell debris. The microcarriers were then re-applied in cell culture. The rate of cell attachment, growth and metabolism on re-used carriers were found to be comparable to that of on new ones.  相似文献   

13.
A method for quantification of anchorage-dependent cells in culture on plane surfaces or on microcarriers is proposed. It is based on Coomassie brilliant blue R-250 adsorption, followed by elution of the dye and measurement by spectrophotometry at 595 nm. A linear correlation (r = 0.988 to 0.996) was observed between absorbance and cell number along a large range of cell densities. This technique may be used for monitoring cell growth, from seeding of initial inoculi to scaling up of cultures in bioreactors.  相似文献   

14.
Kim JH  Hu WS 《Cytotechnology》1989,2(2):135-140
Hepatoma cells, HepG2, grew normally on microcarriers even at a relatively high agitation rate if sufficient time was allowed for cell attachment and adhesion. However, if a high agitation rate was applied shortly after initial cell attachment, the growth rate was retarded. This sensitivity to mechanical agitation appears to be dependent on the inoculation cell density.  相似文献   

15.
The titanium static mixer reactor, demonstrated for a variety of vaccine processes during the late 197s, was investigated for the production of attenuated hepatitis A virus antigen from anchorage-dependent MRC-5 cells. This reactor system used Charles River Biotechnological Services cabinets for monitoring and process control. Cell inoculation protocols, using 6000-10,000 cells/cm(2), resulted on over 95% attachment at both the laboratory and pilot scales. Indirect monitoring techniques using oxygen, glucose, L-serine, and L-glutamine uptake rates were indicative of cell growth prior to virus inoculation as well as environmental and/or nutrient limitations. Seven laboratory-scale (3900 cm(2)) runs and one pilotscale (265,000 cm(2)) run were conducted to investigate refeeding regiments, parallel versus perpendicular element orientation, increased element surface area per unit volume, and scale-up performance. In general, lysate antigen yields achieved were similar to those of parallel T-flasks cultivated under similar conditions. (c) 1994 John Wiley & Sons, Inc.  相似文献   

16.
A cell-detaching reactor was developed to collect cells growing on microcarriers for inoculation between stepwise-expanded bioreactors. It consisted of a trypsinization zone and a separation zone, which were separated by a 200-mesh stainless steel screen. The screen allowed the cells only to pass through to the next bioreactor, after the cells have been trypsinized and detached from microcarriers. The operating feasibility of the cell-detaching reactor was tested with anchorage-dependent recombinant Chinese hamster ovary (rCHO) and African green monkey kidney (Vero) cells. rCHO and Vero cells were first cultured in a small microcarrier bioreactor, and then inoculated via the cell-detaching reactor into either a packed-bed bioreactor (for rCHO cells) or a larger microcarrier bioreactor (for Vero cells). For rCHO cells, the cell density reached 1.3 × 107 cells/ml in the perfusion culture, and Vero cells reached 1.3 × 106 cells/ml in the batch culture.  相似文献   

17.
Microcarriers provide large adhesion area allowing high cell densities in bioreactor systems. This study focused on the investigation of cell adhesion and cell growth characteristics of both anchorage-dependent CHO-K1 and anchorage-independent Ag8 myeloma cell lines cultivated on four different microcarriers (Biosilon®, Microhex®, Cytodex 3®, Cytoline 2®) by considering the cell kinetics and physiological data. Experiments were performed in both static and agitated cell culture systems by using 24-well tissue culture plates and then 50-ml spinner flasks. In agitated cultures, the highest specific growth rates (0.026 h for CHO-K1 and 0.061 h for Ag8 cell line) were obtained with Cytodex 3® and Cytoline 2® microcarriers for CHO-K1 and Ag8 cell line, respectively. Metabolic characteristics showed some variation among the cultures with the four microcarriers. The most significant being the higher production of lactate with microcarriers with CHO-K1 cells relative to the Ag8 cells. SEM analyses revealed the differences in the morphology of the cells along with microcarriers. On Cytodex 3® and Cytoline 2®, CHO-K1 cells attached to the substratum through long, slender filopodia, whereas the cells showed a flat morphology by covering the substratum on the Biosilon® and Microhex®. Ag8 cells maintained their spherical shapes throughout the culture for all types of microcarriers. In an attempt to scale-up, productions were carried out in 50-ml spinner flasks. Cytodex 3® (for CHO-K1 cells) and Cytoline 2® (for Ag8 cells) were evaluated. The results demonstrate that high yield of biomass could be achieved through the immobilization of the cells in each culture system. And cell cultures on microcarriers, especially on Cytodex 3® and Cytoline 2®, represented a good potential as microcarriers for larger scale cultures of CHO-K1 and Ag8, respectively. Moreover, owing to the fact that the cell lines and culture media are specific, outcomes will be applicable for other clones derived from the same host cell lines.  相似文献   

18.
A SEM and TEM evaluation of adhesion of HeLa-S3 cells to suspensions of culture microcarriers coated with various substrata revealed two unique cell morphologies. One is similar to that for cells attaching to culture dishes and the other one only appeared with microcarriers stirred under high shear conditions. The usual appearance of a spreading cell is to change from a sphere to the shape of a 'fried egg'. This proceeded in HeLa cells by a radial extension of the filopodia in between which the cytoplasm subsequently filled. Fluorescent antibody staining of actin suggested that more actin was present at the periphery of the spreading edges of the cell than inwards. The above morphology was characteristic of HeLa cell attachment to gelatin-coated microcarriers. However, the morphology of the attachment to microcarriers coated with non-biological substances such as negatively charged sulfonate groups or positively charged polyethyleneimine or even with the attachment protein laminin was quite different. Here the cells attached and began to spread as with gelatin-microcarriers, however, the spreading was not radial but occurred from one or two major regions of the cell periphery. The cell then appeared to constrict with the formation of a substratum attached pedestal upon which the cell body was perched. With time the cell pinched-off from pedestal. Evidence indicated that the pedestal was quite fragile. Furthermore, fluorescent antiactin staining indicated that the initial spreading region contained abundant actin which was depleted upon pedestal formation and detachment. The above in addition to previous kinetic measurements provided the information to classify cell substrate attachment materials into two distinct types. One is specific substrata which promote normal attachment and spreading and appear to interact with specific cell surface proteins. The other is non-specific substrata which in high shear conditions induces pedestal formation followed by pinching-off of the cells. Had previous attachment assays been done under high shear as done with the microcarriers and HeLa cells it is likely that substrata classified as specific might be reclassified into non-specific.  相似文献   

19.
An assay for measuring the number of adherent cells on microcarriers that is independent from dilution errors in sample preparation was used to investigate attachment dynamics and cell growth. It could be shown that the recovery of seeded cells is a function of the specific rates of cell attachment and cell death, and finally a function of the initial cell‐to‐bead ratio. An unstructured, segregated population balance model was developed that considers individual classes of microcarriers covered by 1–220 cells/bead. The model describes the distribution of initially attached cells and their growth in a microcarrier system. The model distinguishes between subpopulations of dividing and nondividing cells and describes in a detailed way cell attachment, cell growth, density‐dependent growth inhibition, and basic metabolism of Madin‐Darby canine kidney cells used in influenza vaccine manufacturing. To obtain a model approach that is suitable for process control applications, a reduced growth model without cell subpopulations, but with a formulation of the specific cell growth rate as a function of the initial cell distribution on microcarriers after seeding was developed. With both model approaches, the fraction of growth‐inhibited cells could be predicted. Simulation results of two cultivations with a different number of initially seeded cells showed that the growth kinetics of adherent cells at the given cultivation conditions is mainly determined by the range of disparity in the initial distribution of cells on microcarriers after attachment. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
Mouse embryonic stem cell (ESC) lines, and more recently human ESC lines, have become valuable tools for studying early mammalian development. Increasing interest in ESCs and their differentiated progeny in drug discovery and as potential therapeutic agents has highlighted the fact that current two‐dimensional (2D) static culturing techniques are inadequate for large‐scale production. The culture of mammalian cells in three‐dimensional (3D) agitated systems has been shown to overcome many of the restrictions of 2D and is therefore likely to be effective for ESC proliferation. Using murine ESCs as our initial model, we investigated the effectiveness of different 3D culture environments for the expansion of pluripotent ESCs. Solohill Collagen, Solohill FACT, and Cultispher‐S microcarriers were employed and used in conjunction with stirred bioreactors. Initial seeding parameters, including cell number and agitation conditions, were found to be critical in promoting attachment to microcarriers and minimizing the size of aggregates formed. While all microcarriers supported the growth of undifferentiated mESCs, Cultispher‐S out‐performed the Solohill microcarriers. When cultured for successive passages on Cultispher‐S microcarriers, mESCs maintained their pluripotency, demonstrated by self‐renewal, expression of pluripotency markers and the ability to undergo multi‐lineage differentiation. When these optimized conditions were applied to unweaned human ESCs, Cultispher‐S microcarriers supported the growth of hESCs that retained expression of pluripotency markers including SSEA4, Tra‐1–60, NANOG, and OCT‐4. Our study highlights the importance of optimization of initial seeding parameters and provides proof‐of‐concept data demonstrating the utility of microcarriers and bioreactors for the expansion of hESCs. Biotechnol. Bioeng. 2010;107:683–695. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号