首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hsp105alpha and Hsp105beta are mammalian members of the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Here, we show that Hsp105alpha and Hsp105beta bind non-native protein through the beta-sheet domain and suppress the aggregation of heat-denatured protein in the presence of ADP rather than ATP. In contrast, Hsc70/Hsp40 suppressed the aggregation of heat-denatured protein in the presence of ATP rather than ADP. Furthermore, the overexpression of Hsp105alpha but not Hsp70 in COS-7 cells rescued the inactivation of luciferase caused by ATP depletion. Thus, Hsp105/110 family proteins are suggested to function as a substitute for Hsp70 family proteins to suppress the aggregation of denatured proteins in cells under severe stress, in which the cellular ATP level decreases markedly.  相似文献   

2.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

3.
Hsp105alpha and Hsp105beta are stress proteins found in various mammals including human, mouse, and rat, which belong to the Hsp105/Hsp110 protein family. To elucidate their physiological functions, we examined here the chaperone activity of these stress proteins. Hsp105alpha and Hsp105beta prevented the aggregation of firefly luciferase during thermal denaturation, whereas the thermally denatured luciferase was not reactivated by itself or by rabbit reticulocyte lysate (RRL). On the other hand, Hsp105alpha and Hsp105beta suppressed the reactivation of thermally denatured luciferase by RRL and of chemically denatured luciferase by Hsc70/Hsp40 or RRL. Furthermore, although Hsp105alpha and Hsp105beta did not show ATPase activity, the addition of Hsp105alpha or Hsp105beta to Hsc70/Hsp40 enhanced the amount of hydrolysis of ATP greater than that of the Hsp40-stimulated Hsc70 ATPase activity. These findings suggest that Hsp105alpha and Hsp105beta are not only chaperones that prevent thermal aggregation of proteins, but also regulators of the Hsc70 chaperone system in mammalian cells.  相似文献   

4.
Hsp105 is a major mammalian heat shock protein that belongs to the Hsp105/110 family, a diverged subgroup of the Hsp70 family. Hsp105 not only protects the thermal aggregation of proteins, but also regulates the Hsc70 chaperone system in vitro. Recently, it has been shown that Hsp105/110 family members act as nucleotide exchange factors for cytosolic Hsp70s. However, the biological functions of Hsp105/110 family proteins still remain to be clarified. Here, we examined the function of Hsp105 in mammalian cells, and showed that the sensitivity to various stresses was enhanced in the Hsp105-deficient cells compared with that in control cells. In addition, we found that deficiency of Hsp105 impaired the refolding of heat-denatured luciferase in mammalian cells. In contrast, overexpression of Hsp105α enhanced the ability to recover heat-inactivated luciferase in mammalian cells. Thus, Hsp105 may play an important role in the refolding of denatured proteins and protection against stress-induced cell death in mammalian cells.  相似文献   

5.
Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I-IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.  相似文献   

6.
Hsp40 and TPR1 are chaperone adaptors that regulate Hsp70-dependent folding processes by interacting with the amino terminal and carboxy terminal domains of Hsp70, respectively. In this study, we report cooperative interactions involving Hsp70, Hsp40, and TPR1 that enhance Hsp70-dependent folding of chemically denatured substrates. Hsp40 and Hsp70 dependent folding of chemically denatured luciferase was enhanced by up to 80% when TPR1 was also present. HspBp1, a negative modulator of Hsp70, completely inhibited Hsp70-dependent folding in the presence of Hsp40. However, when TPR1 was included in the reaction, the inhibitory effect of HspBp1 was reversed. To analyze the interactions, Kd analysis and competition assays were carried out. The Kds of the interactions of Hsp40, TRP1, and HspBp1 with Hsp70 were 0.5, 0.6, and 0.04 mM, respectively. Interestingly, the Hsp70/HspBp1 complex could only be dissociated in the presence of both Hsp40 and TPR1, suggesting cooperative interaction between Hsp70, Hsp40 and TPR1. To examine these interactions in vivo, we established a tetracycline-regulatable Hela cell line that expresses Hsp70 in the absence of doxycycline. Expression of HspBp1 inhibited Hsp70-dependent folding of heat-denatured luciferase, and this effect was only reversed in the presence of Hsp40 and TPR1. Our findings reveal a novel mechanism of positive regulation of Hsp70-dependent folding.  相似文献   

7.
Shorter J 《PloS one》2011,6(10):e26319
Bacteria, fungi, protozoa, chromista and plants all harbor homologues of Hsp104, a AAA+ ATPase that collaborates with Hsp70 and Hsp40 to promote protein disaggregation and reactivation. Curiously, however, metazoa do not possess an Hsp104 homologue. Thus, whether animal cells renature large protein aggregates has long remained unclear. Here, it is established that mammalian cytosol prepared from different sources possesses a potent, ATP-dependent protein disaggregase and reactivation activity, which can be accelerated and stimulated by Hsp104. This activity did not require the AAA+ ATPase, p97. Rather, mammalian Hsp110 (Apg-2), Hsp70 (Hsc70 or Hsp70) and Hsp40 (Hdj1) were necessary and sufficient to slowly dissolve large disordered aggregates and recover natively folded protein. This slow disaggregase activity was conserved to yeast Hsp110 (Sse1), Hsp70 (Ssa1) and Hsp40 (Sis1 or Ydj1). Hsp110 must engage substrate, engage Hsp70, promote nucleotide exchange on Hsp70, and hydrolyze ATP to promote disaggregation of disordered aggregates. Similarly, Hsp70 must engage substrate and Hsp110, and hydrolyze ATP for protein disaggregation. Hsp40 must harbor a functional J domain to promote protein disaggregation, but the J domain alone is insufficient. Optimal disaggregase activity is achieved when the Hsp40 can stimulate the ATPase activity of Hsp110 and Hsp70. Finally, Hsp110, Hsp70 and Hsp40 fail to rapidly remodel amyloid forms of the yeast prion protein, Sup35, or the Parkinson's disease protein, alpha-synuclein. However, Hsp110, Hsp70 and Hsp40 enhanced the activity of Hsp104 against these amyloid substrates. Taken together, these findings suggest that Hsp110 fulfils a subset of Hsp104 activities in mammals. Moreover, they suggest that Hsp104 can collaborate with the mammalian disaggregase machinery to rapidly remodel amyloid conformers.  相似文献   

8.
CHIP is a cochaperone of Hsp70 that inhibits Hsp70-dependent refolding in vitro. However, the effect of altered expression of CHIP on the fate of unfolded proteins in mammalian cells has not been determined. Surprisingly, we found that overexpression of CHIP in fibroblasts increased the refolding of proteins after thermal denaturation. This effect was insensitive to geldanamycin, an Hsp90 inhibitor, and required the tetratricopeptide repeat motifs but not the U-box domain of CHIP. Inhibition of Hsp70 chaperone activity abolished the effects of CHIP on protein folding, indicating that the CHIP-mediated events were Hsp70 dependent. Hsp40 competitively inhibited the CHIP-dependent refolding, which is consistent with in vitro data indicating that these cofactors act on Hsp70 in the ATP-bound state and have opposing effects on Hsp70 ATPase activity. Consistent with these observations, CHIP overexpression did not alter protein folding in the setting of ATP depletion, when Hsp70 is in the ADP-bound state. Concomitant with its effects on refolding heat-denatured substrates, CHIP increased the fraction of nascent chains coimmunoprecipitating with Hsc70, but only when sufficient ATP was present to allow Hsp70 to cycle rapidly. Our data suggest that, consistent with in vitro studies, CHIP attenuates the Hsp70 cycle in living cells. The impact of this effect on the fate of unfolded proteins in cells, however, is different from what might be expected from the in vitro data. Rather than resulting in inhibited refolding, CHIP increases the folding capacity of Hsp70 in eukaryotic cells.  相似文献   

9.
Studies on the Hsp70 chaperone machine in eukaryotes have shown that Hsp70 and Hsp40/Hdj1 family proteins are sufficient to prevent protein misfolding and aggregation and to promote refolding of denatured polypeptides. Additional protein cofactors include Hip and Bag1, identified in protein interaction assays, which bind to and modulate Hsp70 chaperone activity in vitro. Bag1, originally identified as an antiapoptotic protein, forms a stoichiometric complex with Hsp70 and inhibits completely Hsp70-dependent in vitro protein refolding of an unfolded polypeptide. Given its proposed involvement in multiple cell signaling events as a regulator of Raf1, Bcl2, or androgen receptor, we wondered whether Bag1 functions in vivo as a negative regulator of Hsp70. In this study, we demonstrate that Bag1, expressed in mammalian tissue culture cells, has pronounced effects on one of the principal activities of Hsp70, as a molecular chaperone essential for stabilization and refolding of a thermally inactivated protein. The levels of Hsp70 and Bag1 were modulated either by transient transfection or conditional expression in stably transfected lines to achieve levels within the range detected in different mammalian tissue culture cell lines. For example, a twofold increase in the concentration of Bag1 reduced Hsp70-dependent refolding of denatured luciferase by a factor of 2. This effect was titratable, and higher levels of wild-type but not a mutant form of Bag1 further inhibited Hsp70 refolding by up to a factor of 5. The negative effects of Bag1 were also observed in a biochemical analysis of Bag1- or Hsp70-overexpressing cells. The ability of Hsp70 to maintain thermally denatured firefly luciferase in a soluble state was reversed by Bag1, thus providing an explanation for the in vivo chaperone-inhibitory effects of Bag1. Similar effects on Hsp70 were observed with other cytoplasmic isoforms of Bag1 which have in common the carboxyl-terminal Hsp70-binding domain and differ by variable-length amino-terminal extensions. These results provide the first formal evidence that Bag1 functions in vivo as a regulator of Hsp70 and suggest an intriguing complexity for Hsp70-regulatory events.  相似文献   

10.
DjlA is a 30-kDa type III membrane protein of Escherichia coli with the majority, including an extreme C-terminal putative J-domain, oriented toward the cytoplasm. No other regions of sequence similarity aside from the J-domain exist between DjlA and the known DnaK (Hsp70) co-chaperones DnaJ (Hsp40) and CbpA. In this study, we explored whether and to what extent DjlA possesses DnaK co-chaperone activity and under what conditions a DjlA-DnaK interaction could be important to the cell. We found that the DjlA J-domain can substitute fully for the J-domain of DnaJ using various in vivo functional complementation assays. In addition, the purified cytoplasmic fragment of DjlA was shown to be capable of stimulating DnaK ATPase in a manner indistinguishable from DnaJ, and, furthermore, DjlA could act as a DnaK co-chaperone in the reactivation of chemically denatured luciferase in vitro. DjlA expression in the cell is tightly controlled, and even its mild overexpression leads to induction of mucoid capsule. Previous analysis showed that DjlA-mediated induction of the wca capsule operon required the RcsC/RcsB two-component signaling system and that wca induction by DjlA was lost when cells contained mutations in either the dnaK or grpE gene. We now show using allele-specific genetic suppression analysis that DjlA must interact with DnaK for DjlA-mediated stimulation of capsule synthesis. Collectively, these results demonstrate that DjlA is a co-chaperone for DnaK and that this chaperone-co-chaperone pair is implicated directly, or indirectly, in the regulation of colanic acid capsule.  相似文献   

11.
Silflow CD  Sun X  Haas NA  Foley JW  Lefebvre PA 《Genetics》2011,189(4):1249-1260
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.  相似文献   

12.
The three-dimensional structure of the C-terminal 20 kDa portion of auxilin, which consists of the clathrin binding region and the C-terminal J-domain, has been determined by NMR. Auxilin is an Hsp40 family protein that catalytically supports the uncoating of clathrin-coated vesicles through recruitment of Hsc70 in an ATP hydrolysis-driven process. This 20 kDa auxilin construct contains the minimal sequential region required to uncoat clathrin-coated vesicles catalytically. The tertiary structure consists of six helices, where the first three are unique to auxilin and believed to be important in the catalytic uncoating of clathrin. The last three helices correspond to the canonical J-domain of Hsp40 proteins. The first helix, helix 1, which contains a conserved FEDLL motif believed to be necessary for clathrin binding, is transient and not packed against the rest of the structure. Helix 1 is joined to helix 2 by a flexible linker. Helix 2 packs loosely against the J-domain surface, whereas helix 3 packs tightly and makes critical contributions to the J-domain core. A long insert loop, also unique to the auxilin J-domain, is seen between helix 4 and helix 5. Comparison with a previously reported structure of auxilin containing only helices 3-6 shows a significant difference in the invariant HPD segment of the J-domain. The region where helix 1 is located corresponds to the expected region of the unstructured G/F-rich domain seen in DnaJ, i.e., the canonical N-terminal J-domain protein. In contrast, the location of helix 1 differs from the substrate binding regions of two other Hsp40 proteins, Escherichia coli Hsc20 and viral large T antigen. The variety of biological functions performed by Hsp40 proteins such as auxilin, as well as the observed differences in the structure and function of their substrate binding regions, supports the notion that Hsp40 proteins act as target-specific adaptors that recruit their more general Hsp70 partners to specific biological roles.  相似文献   

13.
Substrate transfer from the chaperone Hsp70 to Hsp90   总被引:5,自引:0,他引:5  
Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.  相似文献   

14.
Kim SA  Chang S  Yoon JH  Ahn SG 《FEBS letters》2008,582(5):734-740
Heat shock protein 40 (Hsp40) functions as a co-chaperone of mammalian Heat shock protein 70 (Hsp70) and facilitates the ATPase activity of Hsp70, and also promotes the cellular protein folding and renaturation of misfolded proteins. In an effort to assess the effects of Hsp40, we generated TAT-fused Hsp40 (TAT-Hsp40). The cells were transduced with TAT-Hsp40 and exposed to H(2)O(2). We demonstrated that the TAT-Hsp40-transduced cells were more resistant to cellular cytotoxicity and cell death. In particular, the degradation of Hsp70 was significantly reduced in TAT-Hsp40-containing cells as a consequence of reduced ubiquitin-proteasome activity after oxidative injury. These data support the notion that Hsp40 may confer resistance to oxidative stress via the prevention of proteasome activity.  相似文献   

15.
Mechanisms for regulation of Hsp70 function by Hsp40   总被引:9,自引:0,他引:9       下载免费PDF全文
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.  相似文献   

16.
Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.  相似文献   

17.
The molecular chaperone protein Hsp78, a member of the Clp/Hsp100 family localized in the mitochondria of Saccharomyces cerevisiae, is required for maintenance of mitochondrial functions under heat stress. To characterize the biochemical mechanisms of Hsp78 function, Hsp78 was purified to homogeneity and its role in the reactivation of chemically and heat-denatured substrate protein was analyzed in vitro. Hsp78 alone was not able to mediate reactivation of firefly luciferase. Rather, efficient refolding was dependent on the simultaneous presence of Hsp78 and the mitochondrial Hsp70 machinery, composed of Ssc1p/Mdj1p/Mge1p. Bacterial DnaK/DnaJ/GrpE, which cooperates with the Hsp78 homolog, ClpB in Escherichia coli, could not substitute for the mitochondrial Hsp70 system. However, efficient Hsp78-dependent refolding of luciferase was observed if DnaK was replaced by Ssc1p in these experiments, suggesting a specific functional interaction of both chaperone proteins. These findings establish the cooperation of Hsp78 with the Hsp70 machinery in the refolding of heat-inactivated proteins and demonstrate a conserved mode of action of ClpB homologs.  相似文献   

18.
Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co-chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non-native protein substrate. Here, we show that members of the Hsp70-related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome-associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N-terminal ATPase domain and the ultimate C-terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70-mediated re-folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding.  相似文献   

19.
The Hsp70 family of molecular chaperones has an essential role in the synthesis, folding and translocation of the nascent peptide chain. While the general features of these activities are well documented, less is understood about the regulation of these activities. The ATPase rate is stimulated by non-native proteins, furthermore, interaction with ATP leads to the release of protein substrate concurrent with a conformational change in Hsp70. One interpretation of these data is that the two domains of Hsp70 interact. In the process of mapping the carboxyl-terminal boundary of the substrate binding domain for human Hsp70, we identified a regulatory motif, EEVD, which is conserved at the extreme carboxyl terminus among nearly all cloned cytosolic eukaryotic Hsp70s. Deletion or mutation of EEVD affects the ATPase activity, the ability to interact with substrates, and interferes with the ability of the mutant Hsp70 to interact with HDJ-1 in the refolding of denatured firefly luciferase. Examination of the biophysical properties of the mutant Hsp70s reveals a change in the overall shape and conformation of the protein consistent with reduced interactions between the two domains. These data suggest that the EEVD motif is involved in the intramolecular regulation of Hsp70 function and intermolecular interactions with HDJ-1.  相似文献   

20.
In this study we characterized the chaperone functions of Xenopus recombinant Hsp30C and Hsp30D by using an in vitro rabbit reticulocyte lysate (RRL) refolding assay system as well as a novel in vivo Xenopus oocyte microinjection assay. Whereas heat- or chemically denaturated luciferase (LUC) did not regain significant enzyme activity when added to RRL or microinjected into Xenopus oocytes, compared with native LUC, denaturation of LUC in the presence of Hsp30C resulted in a reactivation of enzyme activity up to 80-100%. Recombinant Hsp30D, which differs from Hsp30C by 19 amino acids, was not as effective as its isoform in preventing LUC aggregation or maintaining it in a folding-competent state. Removal of the first 17 amino acids from the N-terminal region of Hsp30C had little effect on its ability to maintain LUC in a folding-competent state. However, deletion of the last 25 residues from the C-terminal end dramatically reduced Hsp30C chaperone activity. Coimmunoprecipitation and immunoblot analyses revealed that Hsp30C remained associated with heat-denatured LUC during incubation in reticulocyte lysate and that the C-terminal mutant exhibited reduced affinity for unfolded LUC. Finally, we found that Hsc70 present in RRL interacted only with heat-denatured LUC bound to Hsp30C. These findings demonstrate that Xenopus Hsp30 can maintain denatured target protein in a folding-competent state and that the C-terminal end is involved in this function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号