首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using indirect immunofluorescence we have examined the effects of reagents which inhibit the function of ras-related rab small GTP-binding proteins and heterotrimeric G alpha beta gamma proteins in ER to Golgi transport. Export from the ER was inhibited by an antibody towards rab1B and an NH2-terminal peptide which inhibits ARF function (Balch, W. E., R. A. Kahn, and R. Schwaninger. 1992. J. Biol. Chem. 267:13053-13061), suggesting that both of these small GTP-binding proteins are essential for the transport vesicle formation. Export from the ER was also potently inhibited by mastoparan, a peptide which mimics G protein binding regions of seven transmembrane spanning receptors activating and uncoupling heterotrimeric G proteins from their cognate receptors. Consistent with this result, purified beta gamma subunits inhibited the export of VSV-G from the ER suggesting an initial event in transport vesicle assembly was regulated by a heterotrimeric G protein. In contrast, incubation in the presence of GTP gamma S or AIF(3-5) resulted in the accumulation of transported protein in different populations of punctate pre-Golgi intermediates distributed throughout the cytoplasm of the cell. Finally, a peptide which is believed to antagonize the interaction of rab proteins with putative downstream effector molecules inhibited transport at a later step preceding delivery to the cis Golgi compartment, similar to the site of accumulation of transported protein in the absence of NSF or calcium (Plutner, H., H. W. Davidson, J. Saraste, and W. E. Balch. 1992. J. Cell Biol. 119:1097-1116). These results are consistent with the hypothesis that multiple GTP-binding proteins including a heterotrimeric G protein(s), ARF and rab1 differentially regulate steps in the transport of protein between early compartments of the secretory pathway. The concept that G protein-coupled receptors gate the export of protein from the ER is discussed.  相似文献   

2.
Recycling of proteins from the Golgi compartment to the ER in yeast   总被引:32,自引:12,他引:20       下载免费PDF全文
In the yeast Saccharomyces cerevisiae, the carboxyl terminal sequence His-Asp-Glu-Leu (HDEL) has been shown to function as an ER retention sequence (Pelham, H. R. B., K. G. Hardwick, and M. J. Lewis. 1988. EMBO (Eur. Mol. Biol. Organ.) J. 7:1757-1762). To examine the mechanism of retention of soluble ER proteins in yeast, we have analyzed the expression of a preproalpha factor fusion protein, tagged at the carboxyl terminus with the HDEL sequence. We demonstrate that this fusion protein, expressed in vivo, accumulates intracellularly as a precursor containing both ER and Golgi-specific oligosaccharide modifications. The Golgi-specific carbohydrate modification, which occurs in a SEC18-dependent manner, consists of alpha 1-6 mannose linkages, with no detectable alpha 1-3 mannose additions, indicating that the transit of the HDEL-tagged fusion protein is confined to an early Golgi compartment. Results obtained from the fractionation of subcellular organelles from yeast expressing HDEL-tagged fusion proteins suggest that the Golgi-modified species are present in the ER. Overexpression of HDEL-tagged preproalpha factor results in the secretion of an endogenous HDEL-containing protein, demonstrating that the HDEL recognition system can be saturated. These results support the model in which the retention of these proteins in the ER is dependent on their receptor-mediated recycling from the Golgi complex back to the ER.  相似文献   

3.
Chloroplast protein import is generally believed to occur posttranslationally through the interaction of a precursor protein with the Toc and Tic transport apparatus in the plastid envelope membranes. The cleavable N-terminal transit peptide present on translocated proteins has been considered to be essential and sufficient for targeting. This idea was recently challenged when an analysis of the chloroplast proteome revealed many proteins without a predicted transit peptide. A recent study demonstrates the existence of a novel chloroplast targeting pathway, starting with protein entry into the endoplasmic reticulum and involving the Golgi apparatus.  相似文献   

4.
We tested whether the entire Golgi apparatus is a dynamic structure in interphase mammalian cells by assessing the response of 12 different Golgi region proteins to an endoplasmic reticulum (ER) exit block. The proteins chosen spanned the Golgi apparatus and included both Golgi glycosyltransferases and putative matrix proteins. Protein exit from ER was blocked either by microinjection of a GTP-restricted Sar1p mutant protein in the presence of a protein synthesis inhibitor, or by plasmid-encoded expression of the same dominant negative Sar1p. All Golgi region proteins examined lost juxtanuclear Golgi apparatus-like distribution as scored by conventional and confocal fluorescence microscopy in response to an ER exit block, albeit with a differential dependence on Sar1p concentration. Redistribution of GalNAcT2 was more sensitive to low Sar1p(dn) concentrations than giantin or GM130. Redistribution was most rapid for p27, COPI, and p115. Giantin, GM130, and GalNAcT2 relocated with approximately equal kinetics. Distinct ER accumulation could be demonstrated for all integral membrane proteins. ER-accumulated Golgi region proteins were functional. Photobleaching experiments indicated that Golgi-to-ER protein cycling occurred in the absence of any ER exit block. We conclude that the entire Golgi apparatus is a dynamic structure and suggest that most, if not all, Golgi region-integral membrane proteins cycle through ER in interphase cells.  相似文献   

5.
Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH2-terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.  相似文献   

6.
7.
In cells treated with brefeldin A (BFA), movement of newly synthesized membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus was blocked. Surprisingly, the glycoproteins retained in the ER were rapidly processed by cis/medial Golgi enzymes but not by trans Golgi enzymes. An explanation for these observations was provided from morphological studies at both the light and electron microscopic levels using markers for the cis/medial and trans Golgi. They revealed a rapid and dramatic redistribution to the ER of components of the cis/medial but not the trans Golgi in response to treatment with BFA. Upon removal of BFA, the morphology of the Golgi apparatus was rapidly reestablished and proteins normally transported out of the ER were efficiently and rapidly sorted to their final destinations. These results suggest that BFA disrupts a dynamic membrane-recycling pathway between the ER and cis/medial Golgi, effectively blocking membrane transport out of but not back to the ER.  相似文献   

8.
In the yeast secretory pathway, two genes SEC12 and SAR1, which encode a 70-kD integral membrane protein and a 21-kD GTP-binding protein, respectively, cooperate in protein transport from the ER to the Golgi apparatus. In vivo, the elevation of the SAR1 dosage suppresses temperature sensitivity of the sec12 mutant. In this paper, we show cell-free reconstitution of the ER-to-Golgi transport that depends on both of these gene products. First, the membranes from the sec12 mutant cells reproduce temperature sensitivity in the in vitro ER-to-Golgi transport reaction. Furthermore, the addition of the Sar1 protein completely suppresses this temperature-sensitive defect of the sec12 membranes. The analysis of Sar1p partially purified by E. coli expression suggests that GTP hydrolysis is essential for Sar1p to execute its function.  相似文献   

9.
Several complementary approaches have been fruitful in the study of transport from the ER to the Golgi complex in yeast. Mutational analysis has led to the identification of genes required for this process, many of which are now being studied at the molecular and biochemical level. In the case of SEC18, DNA sequence analysis has demonstrated homology to a factor needed for transport in mammalian in vitro systems. In addition, the events that take place at this stage of the secretory pathway have been reconstituted in vitro.  相似文献   

10.
11.
To explore how far into the Golgi stack the capacity to retrieve KDEL proteins extends, we have introduced an exogenous probe (the peptide YHPNSTCSEKDEL) into the TGN of living cells. For this purpose, a CHO cell line expressing a c-myc-tagged version of the transmembrane protein TGN38--which cycles between the TGN and the cell surface--was generated. The cells internalized peptides that were disulfide bonded to anti-myc antibodies and accumulated the peptide-antibody complexes in the TGN. Peptides released from these complexes underwent retrograde transport to the ER, as evidenced by the transfer of N-linked carbohydrate to their acceptor site. The KDEL-tagged glycopeptides (approximately 10% of the endocytosed load) behaved like endogenous ER residents: they stayed intracellular, and their oligosaccharide side chains remained sensitive to endoglycosidase H. An option thus exists to extract ER residents even at the most distant pole of the Golgi stack, suggesting that sorting of resident from exported ER proteins may occur in a multistage process akin to fractional distillation.  相似文献   

12.
Transport and sorting of lipids must occur with specific mechanisms because the membranes of intracellular organelles differ in lipid composition even though most lipid biosynthesis begins in the ER. In yeast, ceramide is synthesized in the ER and transferred to the Golgi apparatus where inositolphosphorylceramide (IPC) is formed. These two facts imply that ceramide can be transported to the Golgi independent of vesicular traffic because IPC synthesis still continues when vesicular transport is blocked in sec mutants. Nonvesicular IPC synthesis in intact cells is not affected by ATP depletion. Using an in vitro assay that reconstitutes the nonvesicular pathway for transport of ceramide, we found that transport is temperature and cytosol dependent but energy independent. Preincubation of ER and Golgi fractions together at 4 degrees C, where ceramide transport does not occur, rendered the transport reaction membrane concentration independent, providing biochemical evidence that ER-Golgi membrane contacts stimulate ceramide transport. A cytosolic protease-sensitive factor is required after establishment of ER-Golgi contacts.  相似文献   

13.
Secretory proteins exit the ER in transport vesicles that fuse to form vesicular tubular clusters (VTCs) which move along microtubule tracks to the Golgi apparatus. Using the well-characterized in vitro approach to study the properties of Golgi membranes, we determined whether the Golgi enzyme NAGT I is transported to ER/Golgi intermediates. Secretory cargo was arrested at distinct steps of the secretory pathway of a glycosylation mutant cell line, and in vitro complementation of the glycosylation defect was determined. Complementation yield increased after ER exit of secretory cargo and was optimal when transport was blocked at an ER/Golgi intermediate step. The rapid drop of the complementation yield as secretory cargo progresses into the stack suggests that Golgi enzymes are preferentially targeted to ER/Golgi intermediates and not to membranes of the Golgi stack. Two mechanisms for in vitro complementation could be distinguished due to their different sensitivities to brefeldin A (BFA). Transport occurred either by direct fusion of preexisting transport intermediates with ER/Golgi intermediates, or it occurred as a BFA-sensitive and most likely COP I-mediated step. Direct fusion of ER/Golgi intermediates with cisternal membranes of the Golgi stack was not observed under these conditions.  相似文献   

14.
15.
Rough endoplasmic reticulum (RER) transport vesicles were generated from gastric mucous cell RER microsomes in the presence of labeled precursors of phospholipids. The vesicles contained 7-10% of their proteins in the form of apomucin (cargo), and 80% of de novo synthesized phosphatidylcholine (PC) was incorporated into the vesicular membrane. In the absence of choline and ethanolamine precursors or in the presence of 3 mM N-ethylmaleimide (NEM), an inhibitor of CTP:phosphocholine cytidylyltransferase, formation of the transport vesicles, their enrichment in the newly synthesized PC, and the total synthesis of PC decreased by 86%, whereas in the presence of 3 mM Zn2+, complete blockage of vesicle formation and PC synthesis was observed. Analysis of the mucin-transporting vesicles indicated that the CTP:phosphocholine cytidylyltransferase and 1,2-diacyl-sn-glycerol:CDP-choline phosphotransferase remained associated with transport vesicles released from ER. The enzymes and other proteins separated from the vesicle surface prior to vesicle fusion with Golgi and the process was induced by phosphorylation. Based on the results of this study, it is proposed that the formation of the ER transport vesicles of gastric mucosal cells is in concert with synthesis of phospholipids and thus in part is regulated by phospholipid-synthesizing enzymes that reside on the membrane during its biogenesis and dissociate from its surface once the task is completed.  相似文献   

16.
Endoplasmic reticulum (ER) quality control (ERQC) components retain and degrade misfolded proteins, and our results have found that the degradation of the soluble ERQC substrates CPY* and PrA* but not membrane spanning ERQC substrates requires transport between the ER and Golgi. Stabilization of these misfolded soluble proteins was seen in cells lacking Erv29p, a probable Golgi localized protein that cycles through the ER by means of a di-lysine ER retrieval motif (KKKIY). Cells lacking Erv29p also displayed severely retarded ER exit kinetics for a subset of correctly folded proteins. We suggest that Erv29p is likely involved in cargo loading of a subset of proteins, including soluble misfolded proteins, into vesicles for ER exit. The stabilization of soluble ERQC substrates in both erv29Delta cells and sec mutants blocked in either ER exit (sec12) or vesicle delivery to the Golgi (sec18) suggests that ER-Golgi transport is required for ERQC and reveals a new aspect of the degradative mechanism.  相似文献   

17.
We have used an in vitro assay that reconstitutes transport from the ER to the Golgi complex in yeast to identify a functional vesicular intermediate in transit to the Golgi apparatus. Permeabilized yeast cells, which serve as the donor in this assay, release a homogeneous population of vesicles that are biochemically distinct from the donor ER fraction. The isolated vesicles, containing a post-ER/pre-Golgi form of the marker protein pro-alpha-factor, were able to bind to and fuse with exogenously added Golgi membranes. The ability to isolate fusion competent vesicles provides direct evidence that ER to Golgi membrane transport is mediated by a discrete population of vesicular carriers.  相似文献   

18.
19.
We show that Nras is transiently localized in the Golgi prior to the plasma membrane (PM). Moreover, green fluorescent protein (GFP)-tagged Nras illuminated motile, peri-Golgi vesicles, and prolonged BFA treatment blocked PM expression. GFP-Hras colocalized with GFP-Nras, but GFP-Kras4B revealed less Golgi and no vesicular fluorescence. Whereas a secondary membrane targeting signal was required for PM expression, the CAAX motif alone was necessary and sufficient to target proteins to the endomembrane where they were methylated, a modification required for efficient membrane association. Thus, prenylated CAAX proteins do not associate directly with the PM but instead associate with the endomembrane and are subsequently transported to the PM, a process that requires a secondary targeting motif.  相似文献   

20.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号