首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A critical element in the ability of endothelial NO to function in the vasculature is preventing its reaction with erythrocytic Hb (haemoglobin). Emerging concepts suggest that the biophysical and rheological properties of the red blood cell are important in meeting this criterion. It has been recognized for some time that cell-free Hb may react with endothelial NO and that this may underlie the problems with Hb-based blood substitutes. More recent data extend these concepts to haemolytic diseases, including sickle cell disease, and have also identified novel therapeutic strategies to prevent interactions of cell-free Hb with NO. In this overview we have hypothesized that production of high concentrations of NO can overcome the diffusional barriers presented by the red cell and result in formation of S-nitrosohaemoglobin. By doing so, it is hypothesized that Hb may mediate the vasodilatory potential of NO and contribute to the hypotensive responses observed in acute inflammatory diseases, including sepsis.  相似文献   

2.
Hemoglobin (Hb) potently inactivates the nitric oxide (NO) radical via a dioxygenation reaction forming nitrate (NO(3)(-)). This inactivation produces endothelial dysfunction during hemolytic conditions and may contribute to the vascular complications of Hb-based blood substitutes. Hb also functions as a nitrite (NO(2)(-)) reductase, converting nitrite into NO as it deoxygenates. We hypothesized that during intravascular hemolysis, nitrite infusions would limit the vasoconstrictive properties of plasma Hb. In a canine model of low- and high-intensity hypotonic intravascular hemolysis, we characterized hemodynamic responses to nitrite infusions. Hemolysis increased systemic and pulmonary arterial pressures and systemic vascular resistance. Hemolysis also inhibited NO-dependent pulmonary and systemic vasodilation by the NO donor sodium nitroprusside. Compared with nitroprusside, nitrite demonstrated unique effects by not only inhibiting hemolysis-associated vasoconstriction but also by potentiating vasodilation at plasma Hb concentrations of <25 muM. We also observed an interaction between plasma Hb levels and nitrite to augment nitroprusside-induced vasodilation of the pulmonary and systemic circulation. This nitrite reductase activity of Hb in vivo was recapitulated in vitro using a mitochondrial NO sensor system. Nitrite infusions may promote NO generation from Hb while maintaining oxygen delivery; this effect could be harnessed to treat hemolytic conditions and to detoxify Hb-based blood substitutes.  相似文献   

3.
S-Nitrosation of cysteine beta93 in hemoglobin (S-nitrosohemoglobin (SNO-Hb)) occurs in vivo, and transnitrosation reactions of deoxygenated SNO-Hb are proposed as a mechanism leading to release of NO and control of blood flow. However, little is known of the oxygen binding properties of SNO-Hb or the effects of oxygen on transnitrosation between SNO-Hb and the dominant low molecular weight thiol in the red blood cell, GSH. These data are important as they would provide a biochemical framework to assess the physiological function of SNO-Hb. Our results demonstrate that SNO-Hb has a higher affinity for oxygen than native Hb. This implies that NO transfer from SNO-Hb in vivo would be limited to regions of extremely low oxygen tension if this were to occur from deoxygenated SNO-Hb. Furthermore, the kinetics of the transnitrosation reactions between GSH and SNO-Hb are relatively slow, making transfer of NO+ from SNO-Hb to GSH less likely as a mechanism to elicit vessel relaxation under conditions of low oxygen tension and over the circulatory lifetime of a given red blood cell. These data suggest that the reported oxygen-dependent promotion of S-nitrosation from SNO-Hb involves biochemical mechanisms that are not intrinsic to the Hb molecule.  相似文献   

4.
Nitric oxide (NO) acts as a smooth muscle relaxation factor and plays a crucial role in maintaining vascular homeostasis. NO is scavenged rapidly by hemoglobin (Hb). However, under normal physiological conditions, the encapsulation of Hb inside red blood cells (RBCs) significantly retards NO scavenging, permitting NO to reach the smooth muscle. The rate-limiting factors (diffusion of NO to the RBC surface, through the RBC membrane or inside of the RBC) responsible for this retardation have been the subject of much debate. Knowing the relative contribution of each of these factors is important for several reasons including optimization of the development of blood substitutes where Hb is contained within phospholipid vesicles. We have thus performed experiments of NO uptake by erythrocytes and microparticles derived from erythrocytes and conducted simulations of these data as well as that of others. We have included extracellular diffusion (that is, diffusion of the NO to the membrane) and membrane permeability, in addition to intracellular diffusion of NO, in our computational models. We find that all these mechanisms may modulate NO uptake by membrane-encapsulated Hb and that extracellular diffusion is the main rate-limiting factor for phospholipid vesicles and erythrocytes. In the case of red cell microparticles, we find a major role for membrane permeability. These results are consistent with prior studies indicating that extracellular diffusion of several gas ligands is also rate-limiting for erythrocytes, with some contribution of a low membrane permeability.  相似文献   

5.
Hemoglobin (Hb)-based oxygen carriers (HBOCs) also known as "blood substitutes" have been under active clinical development over the last two decades. Cell-free Hb outside its natural protective red blood cell environment, as is the case with all HBOCs, has been shown to be vasoactive in part due to the scavenging of vascular endothelial nitric oxide (NO) and may in some instances induce heme-mediated oxidative stress. Chemical modification intended to stabilize HBOCs in the tetrameric or polymeric forms introduces conformational constraints that result in proteins with diverse allosteric responses as well as oxidative and nitrosative redox side reactions. Intra and inter-molecular cross-linking may in some instances also determine the interactions between HBOCs and normal oxidative inactivation and clearance mechanisms. Oxygen and oxidative reactions of normal and several cross-linked Hbs as well as their interactions with endogenous plasma protein (haptoglobin) and cellular receptor pathways (macrophage CD163) differ significantly. Therefore, safety and efficacy may be addressed by designing HBOCs with modifications that limit hypertension, minimize heme destabilization and take into account endogenous Hb removal mechanisms to optimize exposure times for a given indication.  相似文献   

6.
Acellular hemoglobin (Hb)-based O2 carriers (HBOCs) are being investigated as red blood cell (RBC) substitutes for use in transfusion medicine. However, commercial acellular HBOCs elicit both vasoconstriction and systemic hypertension which hampers their clinical use. In this study, it is hypothesized that encapsulation of Hb inside the aqueous core of liposomes should regulate the rates of NO dioxygenation and O2 release, which should in turn regulate its vasoactivity. To test this hypothesis, poly(ethylene glycol) (PEG) conjugated liposome-encapsulated Hb (PEG-LEHs) dispersions were prepared using human and bovine Hb. In this study, the rate constants for O2 dissociation, CO association, and NO dioxygenation were measured for free Hb and PEG-LEH dispersions using stopped-flow UV-visible spectroscopy, while vasoactivity was assessed in rat aortic ring strips using both endogenous and exogenous sources of NO. It was observed that PEG-LEH dispersions had lower O2 release and NO dioxygenation rate constants compared with acellular Hbs. However, no difference was observed in the CO association rate constants between free Hb and PEG-LEH dispersions. Furthermore, it was observed that Hb encapsulation inside vesicles prevented Hb dependent inhibition of NO-mediated vasodilation. In addition, the magnitude of the vasoconstrictive effects of Hb and PEG-LEH dispersions correlated with their respective rates of NO dioxygenation and O2 release. Overall, this study emphasizes the pivotal role Hb encapsulation plays in regulating gaseous ligand binding/release kinetics and the vasoactivity of Hb.  相似文献   

7.
Hb-based O(2)-carrying solutions (HbOCs) have been developed as red blood cell substitutes for use in patients undergoing hemodilution. Variously modified Hb with diverse solution properties have been shown to produce variable hemodynamic responses. We examined, through pulsed-Doppler velocimetry, the systemic and renal hemodynamic effects of dextran-benzene-tetracarboxylate-conjugated (Hb-Dex-BTC), bis(3,5-dibromosalicyl)fumarate cross-linked (alphaalpha-Hb), and o-raffinose-polymerized (o-raffinose-Hb) Hb perfused in rabbits after moderate hemodilution (30% hematocrit), and we compared the effects of these Hb solutions with the effects elicited by plasma volume expanders. In addition, vascular hindrance (resistance/blood viscosity at 128.5 s(-1)) was calculated to determine whether a moderate decrease in the viscosity of blood mixed with HbOCs may impair vasoconstriction as a result of autoregulation after infusion of cell-free Hb. No changes were observed in renal hemodynamics after hemodilution with reference or Hb solutions. Increase in blood pressure and vascular resistance was found with Hb-Dex-BTC and alphaalpha-Hb (for 180 min) and, to a lesser extent, with o-raffinose-Hb (for 120 min). Furthermore, Hb-Dex-BTC (high viscosity) and o-raffinose-Hb (medium viscosity) induced comparable increases in vascular hindrance (from 0.091 to 0. 159 and from 0.092 to 0.162 cm(-1), respectively) but far less than that produced by alphaalpha-Hb (low viscosity, from 0.092 to 0.200 cm(-1)). These results suggest that maintaining the viscosity of blood by infusing solutions with high viscosity makes it possible to limit vasoconstriction due to autoregulation mechanisms and mainly caused by hemodilution per se.  相似文献   

8.
Solutions of modified adult human hemoglobin (Hb) have potential applications as physiological oxygen carriers. The chemical modification that has been the most studied during the last few years is the cross-linking of the protein between its two αβ dimers, in order, first, to hamper their diffusion through the kidney and therefore increase the plasma persistence of Hb, and second, to decrease its oxygen affinity. However, despite the cross-linking, the vascular retention time is only increased by a factor of three, and a supplementary modification of cross-linked Hb is needed in order to further improve its in vivo half-life. The Hb derivatives described in this paper were obtained by the covalent fixation of benzene tetracarboxylate-substituted dextran onto oxyHb. The resulting conjugates all exhibited a higher P50 than native Hb. The experiments carried out in the presence of inositolhexaphosphate showed that the allosteric sites of Hb molecules were occupied by the polymeric reagent. The important decrease in the Bohr effect and the lack of the Cl? effect on the oxygen-binding properties proved that the Val 1α residue was also substituted. Finally, the ability of some conjugates to unload as much O2 as blood, together with their other properties, make them quite promising candidates as red cell substitutes. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
Hemoglobin (Hb) is probably the most thoroughly studied protein in the human body. However, it has recently been proposed that in addition to the well known function of dioxygen and carbon dioxide transporter, one of the main roles of hemoglobin is to store and transport nitrogen monoxide. This hypothesis is highly disputed and is in contrast to the proposal that hemoglobin serves as an NO. scavenger in the blood. In this short review, I have presented the current status of research on the much-debated mechanism of the reaction between circulating hemoglobin and NO.. Despite the fact that oxyHb is extremely rapidly oxidized by NO., under basal physiological conditions the biological activity of NO. in the blood vessels is not completely lost. It has been shown that three factors reduce the efficiency of hemoglobin to scavenge NO.: a so-called red blood cell-free zone created close to the vessel wall by intravascular flow, an undisturbed layer around the red blood cells--where the NO. concentration is much smaller than the bulk concentration--and/or the red blood cell membrane. Alternatively, it has been proposed that NO. binds to Cys beta 93 of oxyHb, is liberated after deoxygenation of Hb, and consequently allows for a more effective delivery of O2 to peripheral tissues. However, because of the extremely fast rate of the reaction between NO. and oxyHb, experiments in vitro lead to artefactual production of large amounts of S-nitroso-hemoglobin. These results, together with other data, which challenge most steps of the NO.-transporter hypothesis, are discussed.  相似文献   

10.
Recent studies have generated a great deal of interest in a possible role for red blood cells in the transport of nitric oxide (NO) to the microcirculation and the vascular effect of this nitric oxide in facilitating the flow of blood through the microcirculation. Many questions have, however, been raised regarding such a mechanism. We have instead identified a completely new mechanism to explain the role of red cells in the delivery of NO to the microcirculation. This new mechanism results in the production of NO in the microcirculation where it is needed. Nitrite produced when NO reacts with oxygen in arterial blood is reutilized in the arterioles when the partial pressure of oxygen decreases and the deoxygenated hemoglobin formed reduces the nitrite regenerating NO. Nitrite reduction by hemoglobin results in a major fraction of the NO generated retained in the intermediate state where NO is bound to Hb(III) and in equilibrium with the nitrosonium cation bound to Hb(II). This pool of NO, unlike Hb(II)NO, is weakly bound and can be released from the heme. The instability of Hb(III)NO in oxygen and its displacement when flushed with argon requires that reliable determinations of red blood cell NO must be performed on freshly lysed samples without permitting the sample to be oxygenated. In fresh blood samples Hb(III)NO accounts for 75% of the red cell NO with appreciably higher values in venous blood than arterial blood. These findings confirm that nitrite reduction at reduced oxygen pressures is a major source for red cell NO. The formation and potential release from the red cell of this NO could have a major impact in regulating the flow of blood through the microcirculation.  相似文献   

11.
Hemoglobin (Hb) solution-based blood substitutes are being developed as oxygen-carrying agents for the prevention of ischemic tissue damage and low blood volume-shock. However, the cell-free Hb molecule has intrinsic toxicity to the tissue since harmful reactive oxygen species (ROS) are readily produced during autoxidation of Hb from the ferrous state to the ferric state, and the cell-free Hb also causes distortion in the oxidant/antioxidant balance in the tissues. There may be further hindering dangers in the use of free Hb as a blood substitute. It has been reported that Hb has peroxidase-like activity oxidizing peroxidase substrates such as aromatic amines. Here we observed the Hb-catalyzed ROS production coupled to oxidation of a neurotransmitter precursor, beta-phenylethylamine (PEA). Addition of PEA to Hb solution resulted in generation of superoxide anion (O2*-). We also observed that PEA increases the Hb-catalyzed monovalent oxidation of ascorbate to ascorbate free radicals (Asc'). The O2*- generation and Asc formation were detected by O2*--specific chemiluminescence of the Cypridina lucigenin analog and electron spin resonance spectroscopy, respectively. PEA-dependent O2*- production and monovalent oxidation of ascorbate in the Hb solution occurred without addition of H2O2, but a trace of H2O2 added to the system greatly increased the production of both O2*- and Asc*. Addition of GSH completely inhibited the PEA-dependent production of O2*- and Asc* in Hb solution. We propose that the O2*- generation and Asc* formation in the Hb solution are due to the pseudoperoxidase activity-dependent oxidation of PEA and resultant ROS may damage tissues rich in monoamines, if the Hb-based blood substitutes were circulated without addition of ROS scavengers such as thiols.  相似文献   

12.
Nitric oxide (NO) plays an important role in autocrine and paracrine manner in numerous physiological processes, including regulation of blood pressure and blood flow, platelet aggregation, and leukocyte adhesion. In vascular wall, most of the bioavailable NO is believed to derive from endothelial cell NO synthase (eNOS). Recently, neuronal NOS (nNOS) has been identified as a source of NO in the vicinity of microvessels and has been shown to participate in vascular function. Thus NO can be produced and transported to the vascular smooth muscle cells from 1). endothelial cells and 2). perivascular nerve fibers, mast cells, and other nNOS-containing sources. In this study, a mathematical model of NO diffusion-reaction in a cylindrical arteriolar segment was formulated. The model quantifies the relative contribution of these NO sources and the smooth muscle availability of NO in a tissue containing an arteriolar blood vessel. The results indicate that a source of NO derived through nNOS in the perivascular region can be a significant contributor to smooth muscle NO. Predicted smooth muscle NO concentrations are as high as 430 nM, which is consistent with reported experimental measurements ( approximately 400 nM). In addition, we used the model to analyze the smooth muscle NO availability in 1). eNOS and nNOS knockout experiments, 2). the presence of myoglobin, and 3). the presence of cell-free Hb, e.g., Hb-based oxygen carriers. The results show that NO release by nNOS would significantly affect available smooth muscle NO. Further experimental and theoretical studies are required to account for distribution of NOS isoforms and determine NO availability in vasculatures of different tissues.  相似文献   

13.
It has been reported that free hemoglobin (Hb) reacts with NO at an extremely high rate (K(Hb) approximately 10(7) M(-1) s(-1)) and that the red blood cell (RBC) membrane is highly permeable to NO. RBCs, however, react with NO 500-1000 times slower. This reduction of NO reaction rate by RBCs has been attributed to the extracellular diffusion limitation. To test whether additional limitations are also important, we designed a competition test, which allows the extracellular diffusion limitation to be distinguished from transmembrane or intracellular resistance. This test exploited the competition between free Hb and RBCs for NO generated in a homogenous phase by an NO donor. If the extracellular diffusion resistance is negligible, then the results would follow a kinetic model that assumes homogenous reaction without extracellular diffusion limitation. In this case, the measured effective reaction rate constant, K(RBC), would remain invariant of the hematocrit, extracellular-free Hb concentration, and NO donor concentration. Results show that the K(RBC) approaches a constant only when the hematocrit is greater than 10%, suggesting that at higher hematocrit, the extracellular diffusion resistance is negligible. Under such a condition, the NO consumption by RBCs is still 500-1000 times slower than that by free Hb. This result suggests that intrinsic RBC factors, such as transmembrane diffusion limitation or intracellular mechanisms, exist to reduce the NO consumption by RBCs.  相似文献   

14.
Nitric oxide in the human respiratory cycle   总被引:23,自引:0,他引:23  
Interactions of nitric oxide (NO) with hemoglobin (Hb) could regulate the uptake and delivery of oxygen (O(2)) by subserving the classical physiological responses of hypoxic vasodilation and hyperoxic vasconstriction in the human respiratory cycle. Here we show that in in vitro and ex vivo systems as well as healthy adults alternately exposed to hypoxia or hyperoxia (to dilate or constrict pulmonary and systemic arteries in vivo), binding of NO to hemes (FeNO) and thiols (SNO) of Hb varies as a function of HbO(2) saturation (FeO(2)). Moreover, we show that red blood cell (RBC)/SNO-mediated vasodilator activity is inversely proportional to FeO(2) over a wide range, whereas RBC-induced vasoconstriction correlates directly with FeO(2). Thus, native RBCs respond to changes in oxygen tension (pO2) with graded vasodilator and vasoconstrictor activity, which emulates the human physiological response subserving O(2) uptake and delivery. The ability to monitor and manipulate blood levels of NO, in conjunction with O(2) and carbon dioxide, may therefore prove useful in the diagnosis and treatment of many human conditions and in the development of new therapies. Our results also help elucidate the link between RBC dyscrasias and cardiovascular morbidity.  相似文献   

15.
Huang KT  Yin CC  Wu JH  Huang HH 《FEBS letters》2005,579(20):4349-4354
Nitric oxide (NO) is generated in endothelial cells, which diffuses to vascular smooth muscle cells (SMCs), activates soluble guanylyl cyclase, and leads to blood vessel dilation. However, this scenario does not explain how SMCs are capable of competing with erythrocytic hemoglobin for NO in vivo. Here, we have developed a competition experiment to determine the NO uptake rate by SMCs and demonstrated that the SMC-NO uptake rate is positively dependent on intracellular superoxide levels. In addition, the superoxide-elicited NO influx is able to enhance cGMP production in SMCs. Our findings imply that vascular SMCs, in vivo, may use superoxide to compete with erythrocytic hemoglobin for NO and obtain the NO bioactivity.  相似文献   

16.
The biological roles of nitric oxide (NO)-hemoglobin (Hb) derivatives are obscure. It is proposed that NO can function as an allosteric regulator of hemoglobin oxygen-binding properties. We aimed to estimate the effects of NO donors and NO-synthase substrate (L-arginine) on hemoglobin-oxygen affinity (HOA) in experiments in vitro with the various ratios between NO formed and Hb and various oxygen pressures. HOA index (p50), blood pH, plasma and red blood cell (RBC) concentrations of nitrite/nitrate and methemoglobin amounts were measured after the experiments. In our experiments, blood incubation with NO donors (glyceryltrinitrate, molsidomine, sodium nitroprusside, S-nitrosocysteine) or NO-synthase substrate (L-arginine) did not change HOA even at NO:Hb ratio of 1:1. At the same time our results showed that oxygenated blood incubation with S-nitrosocysteine induced an oxyhemoglobin dissociation curve shift leftwards. This indicates a leading role of met-Hb in a modification of Hb oxygen-binding properties. However other NO-modified forms of hemoglobin (S-nitroso- and nitrosylhemoglobin) also may be involved in the regulation of HOA. The results obtained indicate that nitric oxide can be the allosteric effector of hemoglobin, increasing or decreasing its oxygen affinity - possibly, through the generation of different NO-Hb derivatives.  相似文献   

17.
Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood.  相似文献   

18.
Microbial flavohemoglobins (flavoHbs) and hemoglobins (Hbs) show large *NO dioxygenation rate constants ranging from 745 to 2900 microM(-1) s(-1) suggesting a primal *NO dioxygenase (NOD) (EC 1.14.12.17) function for the ancient Hb superfamily. Indeed, modern O2-transporting and storing mammalian red blood cell Hb and related muscle myoglobin (Mb) show vestigial *NO dioxygenation activity with rate constants of 34-89 microM(-1) s(-1). In support of a NOD function, microbial flavoHbs and Hbs catalyze O2-dependent cellular *NO metabolism, protect cells from *NO poisoning, and are induced by *NO exposures. Red blood cell Hb, myocyte Mb, and flavoHb-like activities metabolize *NO in the vascular lumen, muscle, and other mammalian cells, respectively, decreasing *NO signalling and toxicity. HbFe(III)-OO*, HbFe(III)-OONO and protein-caged [HbFe(III)-O**NO2] are proposed intermediates in a reaction mechanism that combines both O-atoms of O2 with *NO to form nitrate and HbFe(III). A conserved Hb heme pocket structure facilitates the dioxygenation reaction and efficient turnover is achieved through the univalent reduction of HbFe(III) by associated reductases. High affinity flavoHb and Hb heme ligands, and other inhibitors, may find application as antibiotics and antitumor agents that enhance the toxicity of immune cell-derived *NO or as vasorelaxants that increase *NO signalling.  相似文献   

19.
Based on the properties of two low oxygen affinity mutated hemoglobins (Hb), we have engineered a double mutant Hb (rHb beta YD) in which the beta F41Y substitution is associated with K82D. Functional studies have shown that the Hb alpha 2 beta 2(C7)F41Y exhibits a decreased oxygen affinity relative to Hb A, without a significantly increased autooxidation rate. The oxygen affinity of the natural mutant beta K82D (Hb Providence-Asp) is decreased due to the replacement of two positive charges by two negative ones at the main DPG-binding site. The functional properties of both single mutants are interesting in the view of obtaining an Hb-based blood substitute, which requires: (1) cooperative oxygen binding with an overall affinity near 30 mm Hg at half saturation, at 37 degrees C, and in the absence of 2,3 diphosphoglycerate (DPG), and (2) a slow rate of autooxidation in order to limit metHb formation. It was expected that the two mutations were at a sufficient distance (20 A) that their respective effects could combine to form low oxygen affinity tetramers. The double mutant does display additive effects resulting in a fourfold decrease in oxygen affinity; it can insure, in the absence of DPG, an oxygen delivery to the tissues similar to that of a red cell suspension in vivo at 37 degrees C. Nevertheless, the rate of autooxidation, 3.5-fold larger than that of Hb A, remains a problem.  相似文献   

20.
Experimental hemoglobin-based O2 carriers e.g. cross-linked alphaalpha-hemoglobin (alphaalpha-Hb), are under investigation as potential blood substitutes. However, some Hb-based products form strong oxidant species in vivo that may cause adverse clinical effects. We report the prototype of a new class of modified Hb-based O2 carrier, polynitroxylated alphaalpha-Hb (PNH), which has antioxidant activities that may reduce inflammatory effects mediated by oxidant formation. We compared the effects of alphaalpha-Hb and PNH on xanthine oxidase and H2O2-induced neutrophil-endothelial adhesion in vitro. Both peroxide (>0.1 mM), and superoxide/peroxide generated by xanthine oxidase (XO) (> 10 mU/ml) + 0.1 mM xanthine (X), increased endothelial-neutrophil adhesion. At 30 microM, alphaalpha-Hb significantly increased X/XO-mediated adhesion, while PNH inhibited peroxide or X/XO induced adhesion, with maximal inhibition at 10 microM PNH. These data indicate that PNH has antioxidant-anti-inflammatory properties that suggest its use as a potentially safer blood substitute in reperfusion injury, stroke, myocardial infarction and other forms of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号