共查询到20条相似文献,搜索用时 0 毫秒
1.
施氮对不同品种冬小麦氮素累积和运转的影响 总被引:1,自引:0,他引:1
在鄂北岗地以当地主栽的5个冬小麦品种‘鄂麦14'、‘鄂麦18'、‘鄂麦23'、‘郑麦9023'、和‘洛麦1号'为试验材料,通过田间裂区试验在不施氮(0 kg/hm2)和施氮(195 kg/hm2)条件下研究不同品种小麦氮素的累积、转移与分配规律的差异.结果表明:(1)在扬花期,不施氮处理叶片、茎鞘和穗部氮素累积量均为‘鄂麦14' 最大,积累量分别达到14.2 、16.6 和10.8 kg/hm2;施氮后‘鄂麦23' 的叶片氮素积累量最大(71.5 kg/hm2),‘鄂麦14' 的茎鞘积累量最大(69.0 kg/hm2),‘鄂麦18'的穗部积累量最大(34.2 kg/hm2).(2)成熟后不同部位氮素转移效率表现为叶片>穗>茎鞘,且叶、茎鞘、穗氮素转移效率存在品种差异;不同品种间氮肥效率差异显著,并以‘鄂麦23'的氮肥利用率、氮肥农学效率最高,而‘郑麦9023'的氮肥生理效率最高.(3)在氮胁迫条件下,扬花前‘鄂麦14'各器官氮素累积量、成熟期的氮素转移率及籽粒氮素累积量都显著高于其它品种;而在施氮条件下,冬小麦各器官氮素的累积、转移与分配因品种不同而异,‘鄂麦14'和‘鄂麦23'籽粒及植株氮素累积量都显著高于其它品种.研究发现,冬小麦氮素的累积、转移与分配受品种与氮素调控共同影响;施氮能显著提高各器官氮素的累积量,且提高的幅度因品种而异. 相似文献
2.
Nitrogen Uptake and Accumulation in Grains of Three Winter Wheat Varieties with Altered Source--Sink Ratios 总被引:1,自引:1,他引:1
PEREZ P.; MARTINEZ-CARRASCO R.; MOLINO I. M MARTIN DEL; ROJO B.; ULLOA M. 《Journal of experimental botany》1989,40(6):707-710
In two pot experiments, removal of the top halves of ears (halving)of three winter wheat (Triticum aestivum L.) varieties at varioustimes after anthesis increased the nitrogen content in the grainsof the lower half of the ear. The increase was greater withearly (anthesis and 5 d later) than late (15 and 25 d post-anthesis)removal in the Splendeur and Hobbit varieties, but there wereno significant differences among halving times in Maris Huntsman.Halving also increased nitrogen as a percentage of dry weightof grain. The percentage of nitrogen in the grain decreasedas the time of halving was delayed in Splendeur (expt. 1) andHobbit, but was unaffected by the time of halving in Splendeur(expt. 2) and Maris Huntsman. Nitrogen uptake of shoots afteranthesis decreased with halving. Early halving decreased nitrogenuptake to a lesser extent than did late halving in Splendeurin expt. 1 and in Hobbit, while it decreased nitrogen uptakemore than late halving in Splendeur in expt. 2 and in Mans Huntsman. Key words: Grain nitrogen, nitrogen uptake, source-sink, wheat, variety 相似文献
3.
4.
Justes E.; Mary B.; Meynard J.-M.; Machet J.-M.; Thelier-Huche L. 《Annals of botany》1994,74(4):397-407
A set of N-fertilization field experiments was used to determinethe 'critical nitrogen concentration', i.e, the minimal concentrationof total N in shoots that produced the maximum aerial dry matter,at a given time and field situation. A unique 'critical nitrogendilution curve' was obtained by plotting these concentrationsNct (% DM) vs. accumulated shoot biomass DM (t ha-1). It couldbe described by the equation: Nct = 5·35DM-0·442 when shoot biomass was between 1·55 and 12 t ha-1. Anexcellent fit was obtained between model and data (r2 = 0·98,15 d.f.). A very close relationship was found using reducedN instead of total N, because the nitrate concentrations inshoots corresponding to critical points were small. The criticalcurve was rather close to those reported by Greenwood et al.(1990) for C3 plants. However, this equation did not apply whenshoot biomass was less than 1·55 t ha-1. In this case,the critical N concentration was independent of shoot biomass:the constant critical value Nct = 4·4% is suggested forreduced-N. The model was validated in all the experimental situations,in spite of large differences in growth rate, cultivar, soiland climatic conditions; shoot biomass varying from 0·2to 14 t ha-1. Plant N concentration was found to vary by a factor of fourat a given shoot biomass level. In the heavily fertilized treatments,shoot N concentration could be 60% higher than the criticalconcentration. Most (on average 80%) of the extra N accumulatedwas in the form of reduced N. The proportion of nitrate to totalN in shoot mainly depended on the crop stage of development.It was independent of the nitrogen nutrition level.Copyright1994, 1999 Academic Press Winter wheat, Triticum aestivum, arable crops, plant N concentration, aerial biomass, critical nitrogen, dilution curve, fertilization, reduced N, nitrate 相似文献
5.
Analysis of Light-Induced Depressions of Photosynthesis in Leaves of a Wheat Crop during the Winter 总被引:8,自引:0,他引:8
下载免费PDF全文

The photosynthetic performances of individual leaves of a wheat (Triticum aestivum cv Bezostaya) crop were assessed daily and throughout individual days during the winter when temperature and light levels were fluctuating. Measurements of chlorophyll fluorescence induction and the maximum quantum yield of O2 evolution were made on individual leaves. Depressions in the ratio of variable to maximal fluorescence (Fv/Fm) were correlated with low temperatures and high light levels throughout the winter and during the course of individual days. Depressions in Fv/Fm observed in the field during the day were not accompanied by any significant change in the ability of photosystem II complexes to bind 3-(3,4-dichlorophenyl)-1-dimethyl urea, indicating that the depressions in Fv/Fm were not attributable to photodamage to the D1 protein of the photosystem II reaction center. Decreases in Fv/Fm were associated with increases in the rate of dissipation of excitation energy by radiationless decay processes and decreases in the quantum efficiency of CO2 assimilation, indicative of a rapidly reversible light-induced “downregulation” of photosynthesis. No major changes were observed in the maximum quantum efficiency of O2 evolution of leaves throughout periods of fluctuating temperature and light, because light-induced depressions in photosynthetic efficiency recovered within the time required to make these measurements. 相似文献
6.
7.
Effect of Nitrogen Nutrition on Remobilization of Protein Sulfur in the Leaves of Vegetative Soybean and Associated Changes in Soluble Sulfur Metabolites 总被引:3,自引:0,他引:3
下载免费PDF全文

The hypothesis that protein S is remobilized from mature leaves in response to N stress but not S stress was examined by transferring vegetative soybean (Glycine max L. Merr) plants grown with adequate sulfate and nitrate to nutrient medium with low sulfate (5 [mu]M) and nitrate at either 15, 7.5, 2, or 0.25 mM. Soluble S decreased to very low levels in mature and maturing leaves, especially in low-N plants. At high [N], insoluble S (protein) in mature leaves remained constant, but at low [N], after the soluble S declined, up to 40% of the insoluble S was exported. The losses were complemented by gains, initially in soluble S, but subsequently in insoluble S, in the expanding leaves and the root. In low-N plants, but not in high-N plants, the decrease in insoluble S in mature leaves was complemented by increases in homoglutathione (hGSH), Cys, and Met. At low [N], but not at high [N], the developing leaf, leaf 5, contained high amounts of soluble S, mostly hGSH. The results suggest that, at low [N], protein S is metabolized to hGSH, which serves as the principal transport compound for the export of organic S. 相似文献
8.
Dynamics of Vertical Leaf Nitrogen Distribution in a Vegetative Wheat Canopy. Impact on Canopy Photosynthesis 总被引:11,自引:3,他引:11
Dreccer M. F.; van Oijen M.; Schapendonk A. H.C.M.; Pot C. S.; Rabbinge R. 《Annals of botany》2000,86(4):821-831
The development of vertical canopy gradients of leaf N has beenregarded as an adaptation to the light gradient that helps tomaximize canopy photosynthesis. In this study we report thedynamics of vertical leaf N distribution during vegetative growthof wheat in response to changes in N availability and sowingdensity. The question of to what extent the observed verticalleaf N distribution maximized canopy photosynthesis was addressedwith a leaf layer model of canopy photosynthesis that integratesN-dependent leaf photosynthesis according to the canopy lightand leaf N distribution. Plants were grown hydroponically attwo amounts of N, supplied in proportion to calculated growthrates. Photosynthesis at light saturation correlated with leafN. The vertical leaf N distribution was associated with thegradient of absorbed light. The leaf N profile changed duringcrop development and was responsive to N availability. At highN supply, the leaf N profiles were constant during crop development.At low N supply, the leaf N profiles fluctuated between moreuniform and steep distributions. These changes were associatedwith reduced leaf area expansion and increasing N remobilizationfrom lower leaf layers. The distribution of leaf N with respectto the gradient of absorbed irradiance was close to the theoreticaloptimum maximizing canopy photosynthesis. Sensitivity analysisof the photosynthesis model suggested that plants maintain anoptimal vertical leaf N distribution by balancing the capacityfor photosynthesis at high and low light. Copyright 2000 Annalsof Botany Company Canopy photosynthesis, leaf nitrogen distribution, nitrogen, Triticum aestivum L, wheat 相似文献
9.
冬小麦种子萌发过程中的结合态玉米赤霉烯酮陈新建(河南农业大学农学系,郑州150002)孟繁静(北京农业大学生物学院,北京100094)关键词结合态玉米赤霉烯酮,冬小麦玉米赤霉烯酮(zearalenone)是玉米赤霉菌(G~the-)的一种次生代谢产物... 相似文献
10.
Gould, R. P. and Mansfield, T. A. 1988. Effects of sulphur dioxideand nitrogen dioxide on growth and translocation in winter wheat.J. exp. Bot 39: 38999 Winter wheat (Triticum aestivum L. cv. Avalon) was grown undersimulated autumn conditions for 4 weeks and exposed to a mixtureof SO2 and NO2. Biomass was measured after 2, 3 and 4 weeksand the flag leaves of sample plants were labelled with 14CO2.Biomass yields revealed an increase in shoot-to-root ratiosunder polluted conditions. The labelling experiments showedthat less assimilate was transported to the roots, whilst morewas allocated to the younger components of the plant. It appearedthat NO2 and SO2 also caused labelled photosynthate to be retainedin the labelled leaf. Reducing the photon flux exacerbated theeffects of SO2 and NO2 as indicated by changes in biomass andby the distribution of 14C. Key words: Wheat, SO2, NO2, growth, translocation 相似文献
11.
Contribution of Different Mechanisms to Zinc Efficiency in Bread Wheat During Early Vegetative Stage 总被引:1,自引:1,他引:1
Zinc (Zn) has a vast number of functions in plant metabolism and consequently Zn deficiency has a range of effects on plant growth. There are a number of different possible mechanisms by which plants tolerate Zn deficiency (generally expressed as Zn efficiency), such as Zn uptake, translocation to the shoot and physiological efficiency. However, there have been no direct comparisons of the relative importance of these possible mechanisms of Zn efficiency in a large set of genotypes of contrasting Zn efficiency. Soil and solution culture studies were conducted to examine the relative contribution of different mechanisms of Zn efficiency at the whole plant level in bread and durum wheat during early vegetative stage. Zn treatments were 0, 0.05, 0.1 and 1 mg/kg soil in the soil culture, and nil in the solution culture. Visual symptoms of Zn deficiency, dry matter production, Zn uptake, Zn distribution between roots and shoots, Zn utilization in roots and shoots and Zn remobilisation from the seed into growing parts were examined. Significant genotypic differences were observed in most criteria and responses differed with external Zn supply. The results of the present study suggest that while there are a number of different mechanisms contributing to Zn efficiency, uptake is the major mechanism and the effect of this is modified by the physiological efficiency within the shoot. Root:shoot partitioning was not strongly associated with Zn efficiency and seed Zn remobilisation was not linked to Zn efficiency. Visual symptoms of the severity of Zn deficiency was a good predictor of Zn efficiency and was correlated with Zn uptake. 相似文献
12.
Effect of Nitrogen Fertilizer on Photosynthesis of Several Varieties of Winter Wheat 总被引:2,自引:0,他引:2
The rates of gross photosynthesis of the flag leaf and the nextleaf below (second leaf) in crops of winter wheat were estimatedfrom the 14C uptake of the leaves after exposure to short pulsesof 14CO2. The photosynthetic rates of both leaves during thegrain-filling period decreased with increase in nitrogen fertilizerbecause the intensity of photosynthetically active radiationwas less at the surface of the leaves in the dense crops withadditional nitrogen. In addition, the rate of photosynthesisat saturating light intensity was slightly decreased by nitrogen.The effects of nitrogen, in decreasing the rate of photosynthesisper unit area of leaf and in increasing the leaf-area indexof the top two leaves, were such that the photosynthetic productivityper unit area of land of the flag leaf was increased by nitrogenbut the productivity of the second leaf was unaffected. Applying180 kg N ha1 increased the productivity of the top twoleaves by a factor of 2.3 but increased grain yield by only1.8. The photosynthetic productivity of the second leaf duringthe grain-filling period was about half that of the flag leaf. There was no difference in photosynthetic rate per unit areaof leaves of Cappelle-Desprez and Maris Huntsman which couldaccount for the larger yield of the latter cultivar. There wasa slight indication that the leaves of the semi-dwarf cultivarsMaris Fundin and Hobbit photosynthesized faster than those ofMaris Huntsman. Triticum aestivum L., winter wheat, photosynthesis, nitrogen fertilizer 相似文献
13.
外源DNA直接导入小麦及其在育种上的应用 总被引:24,自引:0,他引:24
本研究选用两个白粒小麦品种作供体,提取其总DNA,采用花粉管直接携带法导入75(198)红粒品种受体植株。DNA导入的第一代(D1),目的性状的转化频率为1.75%和2.94%。D2代变异率显著低于D1代。对D1,D2代所得目的性状变异后代,按照常规育种程序进行D3代观察与鉴定,得到已稳定遗传的后代,从中选取保持原品种其它优良性状而籽粒为的白色的变异类型混合脱粒,获得75(198)改良新品系。 相似文献
14.
Qingfeng Meng Shanchao Yue Xinping Chen Zhenling Cui Youliang Ye Wenqi Ma Yanan Tong Fusuo Zhang 《PloS one》2013,8(7)
Understanding the time-course of dry matter (DM) and nitrogen (N) accumulation in terms of yield–trait relationships is essential to simultaneously increase grain yield and synchronize N demand and N supply. We collected 413 data points from 11 field experiments to address patterns of DM and N accumulation with time in relation to grain yield and management of winter wheat in China. Detailed growth analysis was conducted at the Zadok growth stages (GS) 25 (regreening), GS30 (stem elongation), GS60 (anthesis), and GS100 (maturity) in all experiments, including DM and N accumulation. Grain yield averaged 7.3 Mg ha−1, ranging from 2.1 to 11.2 Mg ha−1. The percent N accumulation was consistent prior to DM accumulation, while both DM and N accumulation increased continuously with growing time. Both the highest and fastest DM and N accumulations were observed from stem elongation to the anthesis stage. Significant correlations between grain yield and DM and N accumulation were found at each of the four growth stages, although no positive relationship was observed between grain yield and harvest index or N harvest index. The yield increase from 7–9 Mg ha−1 to >9 Mg ha−1 was mainly attributed to increased DM and N accumulation from stem elongation to anthesis. Although applying more N fertilizer increased N accumulation during this stage, DM accumulation was not improved, indicating that N fertilizer management and related agronomic management should be intensified synchronously across the wheat growing season to simultaneously achieve high yields and match N demand and N supply. 相似文献
15.
Plant growth was assessed and cellular protein per nuclear DNAamount measured in root meristems and in callus derived fromembryos of a spring (Katepwa) and a winter variety(Beaver) of allohexaploid wheat exposed to lowtemperature treatment. The data obtained were used to test whetherthese genetically distinct varieties of wheat responded differentiallyto cold treatment. Seedlings were grown for 14 d at 20°Cand then transferred to 4°C for 14 d before returning themto 20°C, or else were maintained continuously at 20°C.In winter wheat, root growth at 4°C was significantly greaterover the first 7 d following transfer to 4°C compared withplants retained at 20°C, whereas in spring wheat it wasreduced at 4°C. The pattern of accumulation of cellularprotein for both root meristem cells and in callus cells wasalso generally enhanced at 4°C compared with 20°C inwinter wheat but not in spring wheat. Thus, clear inter-varietaldifferences were established both for dry weight accumulationand cellular protein, and the callus data clearly show thatthe low-temperature-induced accumulation of protein is a cellularphenomenon not necessarily linked to development. The extentto which cold-shock proteins are a component of this low temperature-inducedincrease in cellular protein is discussed. Copyright 2000 Annalsof Botany Company Protein, spring wheat, temperature, tissue culture, Triticum aestivum, winter wheat 相似文献
16.
Yang Dongqing Luo Yongli Kong Xiang Huang Cui Wang Zhenlin 《Journal of Plant Growth Regulation》2021,40(1):329-341
Journal of Plant Growth Regulation - In this study, we assessed the effects of exogenous cytokinin and nitrogen levels on sucrose and nitrogen allocation and tiller bud growth. Results showed that... 相似文献
17.
Xiaobo Li Eric R. Moellering Bensheng Liu Cassandra Johnny Marie Fedewa Barbara B. Sears Min-Hao Kuo Christoph Benning 《The Plant cell》2012,24(11):4670-4686
Following N deprivation, microalgae accumulate triacylglycerols (TAGs). To gain mechanistic insights into this phenomenon, we identified mutants with reduced TAG content following N deprivation in the model alga Chlamydomonas reinhardtii. In one of the mutants, the disruption of a galactoglycerolipid lipase-encoding gene, designated PLASTID GALACTOGLYCEROLIPID DEGRADATION1 (PGD1), was responsible for the primary phenotype: reduced TAG content, altered TAG composition, and reduced galactoglycerolipid turnover. The recombinant PGD1 protein, which was purified from Escherichia coli extracts, hydrolyzed monogalactosyldiacylglycerol into its lyso-lipid derivative. In vivo pulse-chase labeling identified galactoglycerolipid pools as a major source of fatty acids esterified in TAGs following N deprivation. Moreover, the fatty acid flux from plastid lipids to TAG was decreased in the pgd1 mutant. Apparently, de novo–synthesized fatty acids in Chlamydomonas
reinhardtii are, at least partially, first incorporated into plastid lipids before they enter TAG synthesis. As a secondary effect, the pgd1 mutant exhibited a loss of viability following N deprivation, which could be avoided by blocking photosynthetic electron transport. Thus, the pgd1 mutant provides evidence for an important biological function of TAG synthesis following N deprivation, namely, relieving a detrimental overreduction of the photosynthetic electron transport chain. 相似文献
18.
Differential Expression of Proteins in Response to Molybdenum Deficiency in Winter Wheat Leaves Under Low-Temperature Stress 总被引:1,自引:0,他引:1
Xuecheng Sun Qiling Tan Zhaojun Nie Chengxiao Hu Yongqiang An 《Plant Molecular Biology Reporter》2014,32(5):1057-1069
Molybdenum (Mo) is an essential micronutrient for plants. To obtain a better understanding of the molecular mechanisms of cold resistance enhanced by molybdenum application in winter wheat, we applied a proteomic approach to investigate the differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress. Of 13 protein spots that were identified, five spots were involved in the light reaction of photosynthesis, five were involved in the dark reaction of photosynthesis, and three were highly involved in RNA binding and protein synthesis. Before the application of cold stress, four differentially expressed proteins between the Mo deficiency (?Mo) vs. Mo application (+Mo) comparison are involved in carbon metabolism and photosynthetic electron transport. After 48 h of cold stress, nine differentially expressed proteins between the ?Mo vs. +Mo comparison are involved in carbon metabolism, photosynthetic electron transport, RNA binding, and protein synthesis. Under ?Mo condition, cold stress induced a more than twofold decrease in the accumulation of six differential proteins including ribulose bisphosphate carboxylase large-chain precursor, phosphoglycerate kinase, cp31BHv, chlorophyll a/b-binding protein, ribulose bisphosphate carboxylase small subunit, and ribosomal protein P1, whereas under +Mo condition cold stress only decreased the expression of RuBisCO large subunit, suggesting that Mo application might contribute to the balance or stability of these proteins especially under low-temperature stress and that Mo deficiency has greater influence on differential protein expression in winter wheat after low-temperature stress. Further investigations showed that Mo deficiency decreased the concentrations of chlorophyll a, chlorophyll b, and carotenoids; the maximum net photosynthetic rate; the apparent quantum yield; and carboxylation efficiency, even before the application of the cold stress, although the decrease rates were greater after 48 h of cold treatment, which is consistent with changes in the expressions of differential proteins in winter wheat under low-temperature stress. These findings provide some new evidence that Mo might be involved in the light and dark reaction of photosynthesis and protein synthesis. 相似文献
19.
Klaus S. Larsen Anders Michelsen Sven Jonasson Claus Beier Paul Grogan 《Ecosystems》2012,15(6):927-939
Nitrogen (N) is a critical resource for plant growth in tundra ecosystems, and species differences in the timing of N uptake may be an important feature regulating community composition and ecosystem productivity. We added 15N-labelled glycine to a subarctic heath tundra dominated by dwarf shrubs, mosses and graminoids in fall, and investigated its partitioning among ecosystem components at several time points (October, November, April, May, June) through to the following spring/early summer. Soil microbes had acquired 65?±?7% of the 15N tracer by October, but this pool decreased through winter to 37?±?7% by April indicating significant microbial N turnover prior to spring thaw. Only the evergreen dwarf shrubs showed active 15N acquisition before early May indicating that they had the highest potential of all functional groups for acquiring nutrients that became available in early spring. The faster-growing deciduous shrubs did not resume 15N acquisition until after early May indicating that they relied more on nitrogen made available later during the spring/early summer. The graminoids and mosses had no significant increases in 15N tracer recovery or tissue 15N tracer concentrations after the first harvest in October. However, the graminoids had the highest root 15N tracer concentrations of all functional groups in October indicating that they primarily relied on N made available during summer and fall. Our results suggest a temporal differentiation among plant functional groups in the post-winter resumption of N uptake with evergreen dwarf shrubs having the highest potential for early N uptake, followed by deciduous dwarf shrubs and graminoids. 相似文献
20.
Climatic Warming Increases Winter Wheat Yield but Reduces Grain Nitrogen Concentration in East China 总被引:1,自引:0,他引:1
Yunlu Tian Chengyan Zheng Jin Chen Changqing Chen Aixing Deng Zhenwei Song Baoming Zhang Weijian Zhang 《PloS one》2014,9(4)
Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5°C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5°C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat. 相似文献