共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
植物谷胱甘肽过氧化物酶研究进展 总被引:18,自引:1,他引:18
氧化胁迫可诱导植物多种防御酶的产生,其中包括超氧化物歧化酶(SOD,EC1.15.L1)、抗坏血酸过氧化物酶(APX,EC1.11.1.11)、过氧化氢酶(CAT,E.C.1.11.1.6)和谷胱甘肽过氧化物酶(GPXs,EC1.11.1.9).它们在清除活性氧过程中起着不同的作用.GPXs是动物体内清除氧自由基的主要酶类,但它在植物中的功能报道甚少.最近几年研究表明,植物体内也存在类似于哺乳动物的GPXs家族,并对其功能研究已初见端倪.本文综述了有关GPXs的结构以及植物GPXs功能的研究进展. 相似文献
3.
4.
Recent findings in our laboratory suggested that in citrus cells the salt induction of phospholipid hydroperoxide glutathione
peroxidase, an enzyme active in cellular antioxidant defense, is mediated by the accumulation of hydroperoxides. Production
of hydroperoxides occurs as a result of non-enzymatic auto-oxidation or via the action of lipoxygenases (LOXs). In an attempt
to resolve the role of LOX activity in the accumulation of peroxides we analyzed the expression of this protein under stress
conditions and in cells of Citrus sinensis L. differing in sensitivity to salt. Lipoxygenase expression was induced very rapidly only in the salt-tolerant cells and
in a transient manner. The induction was specific to salt stress and did not occur with other osmotic-stress-inducing agents,
such as polyethylene glycol or mannitol, or under hot or cold conditions, or in the presence of abscisic acid. The induction
was eliminated by the antioxidants dithiothreitol and kaempferol, thus once more establishing a correlation between salt and
oxidative stresses. Analyses of both in vitro and in vivo products of LOX revealed a specific 9-LOX activity, and a very fast
reduction of the hydroperoxides to the corresponding hydroxy derivatives. This suggests that one of the metabolites further
downstream in the reductase pathway may play a key role in triggering defense responses against salt stress.
Received: 3 February 2000 / Accepted: 13 June 2000 相似文献
5.
不同浓度盐和H_2O_2对海马齿PHGPx活性的影响 总被引:1,自引:0,他引:1
磷脂氢谷胱甘肽过氧化物酶(PHGPx)是目前发现的唯一能够直接还原膜上脂类过氧化物的抗氧化酶,在保护生物膜免受过氧化损伤方面发挥重要作用.本研究探讨了海马齿PHGPx活性的测定,检测了不同浓度盐和H_2O_3胁迫对PHGPx活性的影响.结果显示,以蒸馏水为缓冲液提取的叶片总蛋白效果较好;NaCl梯度浓度处理下,海马齿叶片PHGPx活性呈先降低后升高然后再降低的趋势,其中500 mmol/L NaCl处理可以诱导最大活性;H_2O_2梯度浓度处理下,海马齿叶片PHGPx活性呈先升高后降低再升高趋势,0.5 mmol/LH_2O_2处理获得最大活性;海马齿植株经H_2O_2清除剂DMTU处理后再用H_2O_2处理,PHGPx的活性降低,同时NaCl的诱导效果并不受到影响.这些研究结果表明,海马齿中PHGPx的活性受到盐和H_2O_2的调节,并且它们对PHGPx酶活的调节可能是两个独立的过程. 相似文献
6.
Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice 总被引:9,自引:0,他引:9
We previous reported that a nano red elemental selenium (Nano-Se) in the range from 20 approximately 60 nm had similar bioavailability to sodium selenite (BioFactors 15 (2001) 27). We recently found that Nano-Se with different size had marked difference in scavenging an array of free radicals in vitro, the smaller the particle, the better scavenging activity (Free Radic. Biol. Med. 35 (2003) 805). In order to examine whether there is a size effect of Nano-Se in the induction of Se-dependent enzymes, a range of Nano-Se (5 approximately 200 nm) have been prepared based on the control of elemental Se atom aggregation. The sizes of Nano-Se particles were inversely correlated with protein levels in the redox system of selenite and glutathione. Different sizes of red elemental Se were prepared by adding varying amount of bovine serum albumin (BSA). Three different sizes of Nano-Se (5 approximately 15 nm, 20 approximately 60 nm, and 80 approximately 200 nm) have been chosen for the comparison of biological activity in terms of the induction of seleno-enzyme activities. Results showed that there was no significant size effect of Nano-Se from 5 to 200 nm in the induction of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase-1 (TrxR-1) in human hepatoma HepG2 cells and the livers of mice. 相似文献
7.
高盐等逆境可以加剧植物体内活性氧的产生,进而引起植物细胞死亡。为开发抗逆境作物,以置于氧化诱导型启动子下定位于叶绿体的转铜/锌超氧化物歧化酶(Cu/ZnSOD)和抗坏血酸过氧化物酶基因(APX)马铃薯为材料,研究了其对MV和 NaCl所引起的氧化胁迫的耐受性。结果表明, MV胁迫下,转基因马铃薯叶片膜的相对电导率明显低于对照; NaCl胁迫下,其叶绿素含量高于对照。 在含NaCl 的培养基上,转基因幼苗生根率明显大于对照。另外,NaCl胁迫下转基因马铃薯叶片的SOD和APX酶活性显著高于对照,与其耐盐性的提高相一致。这些研究表明,转入Cu/ZnSOD和APX基因的马铃薯清除活性氧的能力增强,抗逆性得到提高。本实验采用氧化诱导型启动子调控下的SOD和APX两个基因协同作用,使外源基因只有在逆境胁迫时才特异性表达,增强转基因植株的抗逆效果,为培育抗逆经济作物开阔了思路。 相似文献
8.
To reveal clues to the function of human plasma glutathione peroxidase (GPx), we investigated its catalytic effectiveness
with a variety of hydroperoxides. Comparisons of hydroperoxides as substrates for plasma GPx based on the ratio ofV
max
/K
m
were blocked by the limited solubility of the organic hydroperoxides, which prevented kinetic saturation of the enzyme at
the chosen glutathione concentration. Therefore, we compared the hydroperoxides by the fold increase in the apparent first-order
rate constants of their reactions with glutathione owing to catalysis by plasma GPx. The reductions of aromatic and small
hydrophobic hydroperoxides (cumene hydroperoxide,t-amyl hydroperoxide,t-butyl hydroperoxide, paramenthane hydroperoxide) were better catalyzed by plasma GPx than were reductions of the more “physiological”
substrates (linoleic acid hydroperoxide, hydrogen peroxide, peroxidized plasma lipids, and oxidized cholesterol). 相似文献
9.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx), a selenium-dependent glutathione peroxidase, can interact with lipophilic substrates, including phospholipid hydroperoxides, fatty acid hydroperoxides and cholesterol hydroperoxides, and can reduce them to hydroxide compounds. It also seems to be a major regulator of lipid oxygenation in human epidermoid carcinoma A431 cells. In order to study the functional role of PHGPx in the regulation of 12-lipoxygenase and cyclooxygenase, cDNA of PHGPx was inserted into pcDNA3.1/His, and a plasmid designated as S4 with the His-tag sequence inserted between PHGPx and its 3'-untranslated region was constructed. A number of stable transfectants of A431 cells that could express the tag-PHGPx were generated using plasmid S4. Using an intact cell assay system, the metabolism of arachidonic acid to prostaglandin E(2) significantly decreased in stable transfectants of overexpressing PHGPx compared to that in a vector control cell line. If the intact cell assay was carried out in the presence of 13-hydroperoxyoctadecadienoic acid as a stimulator of lipid peroxidation, formation of 12-hydroxyeicosatetraenoic acid from arachidonic acid also significantly decreased in stable transfectants of overexpressing PHGPx compared to that in a vector control cell line, indicating that PHGPx could downregulate the 12-lipoxygenase activity in cells. These results support the hypothesis that PHGPx plays a pivotal role in the regulation of arachidonate metabolism in A431 cells. 相似文献
10.
A simple method for the selective determination of phospholipid hydroperoxide (PLOOH) families in complex lipid populations has been developed. Referred to as HPTLC-TPD, the method is based on PLOOH separation by normal-phase high-performance thin-layer chromatography, followed by spray detection with N,N,N',N'-tetramethyl-p-phenylenediamine and densitometric scanning of the purple bands. Parental phospholipids and alcohol analogues are unreactive. Calibration curves, dynamic ranges, and detection limits were established for hydroperoxide standards prepared from phospatidylcholine, phosphatidylserine, phosphatidylethanolamine, and cardiolipin. For all PLOOH classes, responsiveness was linear out to at least 10 nmol of sample load, the detection limit being 0.1-0.2 nmol. HPTLC-TPD data were validated by subjecting duplicate samples to more complex column chromatography with reductive-mode electrochemical detection. General applicability of the new technique was demonstrated using lipid extracts from two test systems: (i) photoperoxidized liposomal membranes and (ii) tumor cells that had been oxidatively stressed with the respiratory inhibitor antimycin A. HPTLC-TPD provides a convenient, specific, and highly sensitive means for quantifying individual PLOOH families in complex natural mixtures. 相似文献
11.
A plant mitochondrial phospholipid hydroperoxide glutathione peroxidase: its precise localization and higher enzymatic activity 总被引:1,自引:0,他引:1
A novel cDNA of phospholipid hydroperoxide glutathione peroxidase (PHGPx), which encodes a functional protein capable of complementing the yeast PHGHX-deletion mutant, was recently discovered in radish (Raphanus sativus) and designated as RsPHGPx [Yang X-D, Li W-J, Liu J-Y (2005) Biochim Biophys Acta 1728:199–205]. Sequence alignment suggested that RsPHGPx contains a targeting peptide required for transport to mitochondria, but the experimental evidence for the exact intracellular distribution of RsPHGPx remains to be elucidated. To uncover the cellular localization of plant PHGPx, we first investigated RsPHGPx’s intracellular distribution. Western blot analysis of subcellular fractions using the RsPHGPx antiserum clearly indicated the distribution of RsPHGPx in the radish mitochondrial fraction. Furthermore, a construct expressing the RsPHGPx precursor tagged with green fluorescent protein was introduced into tobacco and yeast cells, and the fusion protein was transported into both mitochondria, indicating that RsPHGPx was indeed localized in mitochondria. To explore the biochemical functions of this enzyme, we tested the enzymatic activity of the recombinant RsPHGPx protein. It displayed GSH-dependent peroxidase activity and exhibited the largest affinity to and the highest catalytic efficiency on phosphatidylcholine hydroperoxide, suggesting that phospholipid hydroperoxide is probably the optimum substrate for RsPHGPx. Furthermore, RsPHGPx showed a much higher V
max value, by two orders of magnitude, than those of all other known plant PHGPxs. Taken together, these results showed evidence for the first time of mitochondrial localization and higher activity of PHGPx in plants and provided a framework for continued studies on the physiological functions of RsPHGPx. 相似文献
12.
The distribution of glutathione reductase (GR), glutathione peroxidase (GPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) in isolated rat brain mitochondria was investigated. using a fractionation procedure for the separation of inner and outer membranes, contact sites between the two membranes and a soluble fraction mainly originating from the mitochondrial matrix. The data indicate that GR and GPx are concentrated in the soluble fraction, with a minor portion of the two enzymes being associated with the contact sites. PHGPx is localized largely in the inner membrane. The possible functional significance of these findings is discussed. 相似文献
13.
Marcel Leist Stefanie Maurer Manfred Schultz Angelika Elsner Dieter Gawlik Regina Brigelius-Flohé 《Biological trace element research》1999,68(2):159-174
Cells cultivated under standard conditions were highly deficient in tocopherol, selenium, and glutathione peroxidase (GPx)
activities. We investigated whether and to what extent the addition of different selenocompounds to growth media would alter
biochemical, physiological, and pathophysiological parameters of cultured liver cells. Cellular uptake of selenium, GPx activities,
and cytoprotection were measured and compared in human hepatoma cells (HepG2). Selenite and selenocystine were Se donors of
high bioavailability (i.e., with these culture supplements, the increased Se uptake, induction of GPx isoenzymes, and protection
of treated cells from lipid hydroperoxides were well correlated). In contrast, selenium from selenomethionine was incorporated
into cellular proteins but had no effect on GPx activities or cytoprotection. The data show that not all selenium donors provide
selenium, which is bioactivated to act as antioxidant. Thus, cellular selenium content, in general, did not correlate with
cytoprotective activity of this trace element. However, cellular GPx activities at different times, with different concentrations,
and with different Se donors always correlated with protection from lipid hydroperoxides and may, thus, represent a more reliable
parameter to define adequate Se supply. 相似文献
14.
Sunflower seedlings subjected to 120 mM NaCl stress exhibit high total peroxidase activity, differential expression of its isoforms and accumulation of lipid hydroperoxides. This coincides with high specific activity of phospholipid hydroperoxide glutathione peroxidase (PHGPX) in the 10,000g supernatant from the homogenates of 2–6 d old seedling cotyledons. An upregulation of PHGPX activity by NaCl is evident from Western blot analysis. Confocal laser scanning microscopic (CLSM) analysis of sections of cotyledons incubated with anti-GPX4 (PHGPX) antibody highlights an enhanced cytosolic accumulation of PHGPX, particularly around the secretory canals. Present work, thus, highlights sensing of NaCl stress in sunflower seedlings in relation with lipid hydroperoxide accumulation and its scavenging through an upregulation of PHGPX activity in the cotyledons. 相似文献
15.
Eicosapentaenoic acid (EPA) was previously shown to induce caspase-independent apoptosis in rat basophilic leukemia cells (RBL2H3 cells) by translocation of apoptosis-inducing factor (AIF) [Free Radic Res (2005) 39, 225-235]. Here, we attempted to investigate the mechanism of EPA-induced apoptosis. A rapid and sustained increase in calcium was observed in mitochondria at 2 h after the addition of EPA prior to apoptosis. Coincidently, hydroperoxide was generated in the mitochondria after exposure to EPA. Production of mitochondrial hydroperoxide was significantly reduced by ruthenium red, an inhibitor of mitochondrial calcium uniporter, and BAPTA-AM, a cytoplasmic calcium chelator, indicating that generation of hydroperoxide is triggered by an accumulation of calcium in the mitochondria. The production of mitochondrial hydroperoxide was markedly attenuated by overexpression of phospholipid hydroperoxide glutathione peroxidase (PHGPx) in the mitochondria. Apoptosis was therefore, significantly prevented through inhibition of mitochondrial hydroperoxide generation with mitochondrial PHGPx, ruthenium red or BAPTA-AM. However, accumulation of calcium in the mitochondria was not prevented by mitochondrial PHGPx although apoptosis was blocked, indicating that elevated calcium does not directly induce apoptosis. Taken together, our results show that calcium-dependent hydroperoxide accumulation in the mitochondria is critical in EPA-induced apoptosis. 相似文献
16.
17.
Suryanarayanan Vandhana Karunakaran Coral Udayakumar Jayanthi Perinkulam Ravi Deepa Subramanian Krishnakumar 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(9):1458-1466
Retinoblastoma (RB) is a malignant intra-ocular neoplasm that affects children (usually below the age of 5 years). In addition to conventional chemotherapy, novel therapeutic strategies that target metabolic pathways such as glycolysis and lipid metabolism are emerging. Fatty acid synthase (FASN), a lipogenic multi-enzyme complex, is over-expressed in retinoblastoma cancer. The present study evaluated the biochemical basis of FASN inhibition induced apoptosis in cultured Y79 RB cells. FASN inhibitors (cerulenin, triclosan and orlistat) significantly inhibited FASN enzyme activity (P < 0.05) in Y79 RB cells. This was accompanied by a decrease in palmitate synthesis (end-product depletion), and increased malonyl CoA levels (substrate accumulation). Differential lipid profile was biochemically estimated in neoplastic (Y79 RB) and non-neoplastic (3T3) cells subjected to FASN inhibition. The relative proportion of phosphatidyl choline to neutral lipids (triglyceride + total cholesterol) in Y79 RB cancer cells was found to be higher than the non-neoplastic cells, indicative of altered lipid distribution and utilization in tumor cells. FASN inhibitor treated Y79 RB and fibroblast cells showed decrease in the cellular lipids (triglyceride, cholesterol and phosphatidyl choline) levels. Apoptotic DNA damage induced by FASN inhibitors was accompanied by enhanced lipid peroxidation. 相似文献
18.
Involvement of hydroperoxide in mitochondria in the induction of apoptosis by the eicosapentaenoic acid 总被引:2,自引:0,他引:2
Eicosapentaenoic acid (EPA) induced apoptosis of rat basophilic leukemia cells (RBL2H3 cells), whereas 100 μM linoleic acid (LA) had no significant effect. Cytochrome c was released at 4 h. Apoptosis was detected at 6 h after exposure to EPA and docosahexaenoic acid (DHA), and preceded the activation of caspase-3. Liberation of apoptosis-inducing factor (AIF) from mitochondria and its translocation into the nucleus were observed at 4 h. A broad-specificity caspase inhibitor, z-VAD-fmk, failed to suppress the apoptosis, suggesting that EPA induced caspase-independent apoptosis. On other hand, a poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that blocks AIF translocation to the nucleus suppressed EPA-induced apoptosis. The level of hydroperoxide in the cells and mitochondria increased at the early phase of apoptosis within 2 h. On the contrary, elevation of hydroperoxide in mitochondria was not observed after treatment with LA. The EPA-induced apoptosis was abolished by prevention of the hydroperoxide elevation in mitochondria via overexpression of mitochondrial phospholipid hydroperoxide glutathione peroxidase (PHGPx). Neither cytochrome c nor AIF were released from mitochondria in the mitochondrial PHGPx-overexpressing cells. EPA also induced apoptosis in HeLa cells, but not in L929 or RAW264.7 cells. Enhancement of the hydroperoxide level in mitochondria was found in the EPA-sensitive HeLa cells after treatment with EPA, whereas no such enhancement was observed in the apoptosis-resistant L929 and RAW264.7 cells. These results suggest that the generation of hydroperoxide in mitochondria induced by EPA is associated with AIF release from mitochondria and the induction of apoptosis. 相似文献
19.
20.
This paper mainly studies the possible antioxidant of monoterpene and effects of its absence on other antioxidant defense. The leaves of rubber tree (Hevea brasiliensis) were fed with fosmidomycin through transpiration stream, in the dark, at room temperature for 2 h, and were then exposed to bright illumination (1,500 μmol m−2 s−1) and moderately high temperature (30°C) for 1 h. The results showed that monoterpene biosynthesis in leaves was considerably inhibited by fosmidomycin, and the elevated levels of both hydrogen peroxide and malondialdehyde were observed in the leaves fed with fosmidomycin (LFF). Compared to the control leaves (CK), ∆F/F m′ in the LFF was markedly lower during the first 20 min; however, there were no significant differences in non-photochemical quenching and photosynthetic pigments (chlorophylls and carotenoids). In contrast, the activities of antioxidant enzymes (superoxide dismutase, catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase) were enhanced in the LFF. Meanwhile, the contents of antioxidant metabolites (ascorbate and glutathione) were also elevated in the LFF, when compared with the CK. The results obtained here suggest that monoterpene may be very effective molecule in protecting plants against oxidative stress, the absence of monoterpene leads to the increased responses of the enzymatic and non-enzymatic antioxidant defenses to oxidative stress, and the enhancement of the enzymatic and non-enzymatic antioxidant defenses may, in part, compensate for the loss of antioxidant conferred by monoterpene. 相似文献