首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic stem (ES) cell lines, derived from the inner cell mass (ICM) of blastocyst-stage embryos, are pluripotent and have a virtually unlimited capacity for self-renewal and differentiation into all cell types of an embryoproper. Both human and mouse ES cell lines are the subject of intensive investigation for potential applications in developmental biology and medicine. ES cells from both sources differentiate in vitro into cells of ecto-, endoand meso-dermal lineages, and robust cardiomyogenic differentiation is readily observed in spontaneously differentiating ES cells when cultured under appropriate conditions. Molecular, cellular and physiologic analyses demonstrate that ES cell-derived cardiomyocytes are functionally viable and that these cell derivatives exhibit characteristics typical of heart cells in early stages of cardiac development. Because terminal heart failure is characterized by a significant loss of cardiomyocytes, the use of human ES cell-derived progeny represents one possible source for cell transplantation therapies. With these issues in mind, this review will focus on the differentiation of pluripotent embryonic stem cells into cardiomyocytes as a developmental model, and the possible use of ES cell-derived cardiomyocytes as source of donor cells.  相似文献   

2.
A major limitation of the widespread use of stem cells in a variety of biotechnological applications is the relatively low level of knowledge about how to maintain these cells in vitro without losing the long-term multilineage growth properties required for their clinical utility. An experimental and theoretical framework for predicting and controlling the outcome of stem cell stimulation by exogenous cytokines would thus be useful. An emerging theme from recent hematopoietic stem cell (HSC)-expansion studies is that a net gain in HSC numbers requires the maintenance of critical signaling ligand(s) above a threshold level. These ligand-receptor complex thresholds can be maintained, for example, by high concentrations of soluble cytokines or by cytokine presentation on cell surfaces. According to such a model, when the relevant ligand-receptor interaction falls below this threshold level, the probability of a differentiation response is increased; otherwise, self-renewal is favored. Taking advantage of the ability of the cytokine leukemia inhibitory factor (LIF) to maintain embryonic stem (ES) cell pluripotentiality at high concentrations, we are testing this model by investigating critical parameters in the control of ES cell responses. We have developed quantitative assays of ES cell differentiation by measuring cell-surface alkaline phosphatase activity, cell-surface stage specific embryonic antigen (SSEA)-1 expression, and the ability of ES cells to form embryoid bodies. Examination of ES cell responses over a range of LIF concentrations shows that LIF supplementation has little effect on ES cell-growth rate but significantly alters the probability of a cell undergoing a self-renewal vs. a differentiation division. In vitro culture parameters such as inoculum cell density, medium exchange, as well as cell-intrinsic processes such as autocrine secretion are shown to affect this decision. In addition to yielding new information on stem cell regulation by exogenous factors, these studies provide important clues about culture of these cells and should stimulate further investigations into the mechanistic basis of stem cell differentiation control.  相似文献   

3.
小鼠孤雌胚胎干细胞集落的建立   总被引:2,自引:0,他引:2  
ESTABLISHMENTOFSTEMCELLCOLONIESFROMPARTHENOGENETICALLYDERIVEDBLASTOCYSTSOFMOUSE小鼠孤雌胚胎干细胞集落的建立KeywordsMouse,Parthenogeneticem...  相似文献   

4.
It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alphaMHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications.  相似文献   

5.
6.
胚胎干细胞建系方法   总被引:1,自引:0,他引:1  
胚胎干细胞具有的独特特征———分化全能性是生物学各研究领域多年来的热点之一。胚胎干细胞独特的生物学特征在生殖细胞与体细胞及动物个体之间建立了广泛的联系。胚胎干细胞应用前景有着巨大的潜力。为此,对其培养建系的完善性研究显得格外重要。在此,对胚胎干细胞建系方法方面做一简要综述,尤其对建系过程中内细胞团的分离方法及干细胞集落的获取方法进行探讨。  相似文献   

7.
Using embryonic stem cells to introduce mutations into the mouse germ line   总被引:5,自引:0,他引:5  
It is now possible, through the use of a number of experimental technologies, to transfer genetic information into mouse embryos to stably alter the genetic constitution of mice. This experimental approach, namely the generation of so-termed "transgenic" animals, is affording new insights into a wide variety of biological problems. This review focuses on one system for the generation of transgenic mice, which utilizes tissue culture cell lines of embryonic stem cells, termed ES cells. The remarkable property of ES cells is that they retain the potential to reform an embryo; when they are replaced inside a carrier embryo, they resume normal development and contribute to all the tissues of the live-born chimeric animal. Recent experiments, using a repertoire of gene transfer techniques, have shown that ES cells are amenable to a variety of experimental manipulations in tissue culture. Moreover, it has been demonstrated that these genetically altered cells can be transferred into the germ line of chimeric mice, thus allowing the production of unique strains of animals for study. The applications of the ES cell system are reviewed, with particular emphasis on their use for the generation of random insertional mutations using a retrovirally mediated mutagenesis approach. Finally, the use of ES cells in conjunction with the recently described technique of homologous recombination, or "gene targeting," is discussed. This technology allows the generation of animals carrying extremely precise genetic modifications of endogenous genes.  相似文献   

8.
Recently, we proposed that rabbit embryonic stem (ES) cells can be stable mammalian ES cells and can be a small animal model for human ES cell research. However, the signaling pathways controlling rabbit ES cell pluripotency remain largely unknown. Here we report that bFGF can maintain the undifferentiated status of rabbit ES cells and found that Activin/Nodal signaling through Smad2/3 activation is necessary to maintain the pluripotent status of rabbit ES cells. We further show that in spite of STAT3 in rabbit ES cells, LIF is dispensable for maintenance of undifferentiated status in rabbit ES cells. Although phosphorylation of Janus Kinase signal transducer and activator (JAK/STAT) disappeared after JAK-inhibitor treatment, OCT4 is constantly produced. When rabbit ES cells were cultured for more than 40 passages in the absence of LIF, expression of stem cell markers and teratoma formation were observed. Additionally, treatment with Rho-associated kinase (ROCK) inhibitor, Y27632, to rabbit ES cells significantly enhanced cell growth. These findings suggest that molecular mechanisms underlying rabbit ES cell self-renewal and pluripotency are similar to primate ES cells. Rabbit ES cells may provide a translational research model for the study of human diseases in vitro and applications to transplantation therapy.  相似文献   

9.
10.
胚胎干细胞分化为肝细胞的研究进展   总被引:6,自引:0,他引:6  
目前 ,细胞移植作为终末期肝病的辅助治疗方法 ,移植的细胞必须满足在受体肝脏中存活、增殖并可分化为成熟肝细胞两个重要条件 ,但目前应用的肝细胞来源有限 ,其功能随着培养时间的延长而逐渐下降等问题限制了这一治疗策略的广泛开展。作为具有发育全能性和无限增殖能力的细胞 ,胚胎干细胞向肝细胞的分化研究近年来引起了广泛的关注 ,并取得了较大的进展 ,寻找合适、高效的分化诱导方法是目前研究的热点之一。胚胎干细胞向肝细胞的分化研究既可以为临床细胞替代治疗提供合适的细胞来源 ,也可以在药物评估和肝脏发育分化基础研究方面起到重要的作用。通过概括肝脏和拟胚体分化发育的分子机制 ,对体外胚胎干细胞向肝细胞分化的几种诱导体系作了介绍 ,并对分化肝细胞的应用前景和存在的问题进行了讨论。  相似文献   

11.
鱼类的胚胎干细胞   总被引:6,自引:1,他引:6  
胚胎干细胞(ES)是未分化的细胞培养物,来自动物的早期胚胎。它们能成为稳定的细胞系和长期冻存。在适当的条件下,ES细胞能分化成各种细胞类型,包括生殖细胞。这样,ES细胞就提供了一个有效的纽带,将动物基因组的体外和体内遗传操作连系起来。ES细胞的魅力就由其在产生和分析基因敲除老鼠中显现出来。目前,ES细胞技术仅见之老鼠,因其它脊椎动物的ES细胞的培养和建系难获成功。在鱼类,人们已做了大量的尝试。我们以青鳉(Oryzias latipes)作为建立鱼类ES细胞技术的模式,通过建立并应用无滋养层细胞的培养条件,获得了来自中期囊胚的ES细胞系。青鳉的ES细胞和老鼠的ES细胞有很多共同特征,如二倍体核型、分化潜力和形成嵌合体。因此,在鱼类建立和应用ES细胞技术是可能的。青鳉ES细胞的培养条件已成功地应用到其它鱼类如斑马鱼甚至海水鱼。本文旨在以青鳉为模式,综述获得和应用模式鱼和经济鱼ES细胞的主要进展和前景。  相似文献   

12.
Organogenesis is regulated by a complex network of intrinsic cues, diffusible signals and cell/cell or cell/matrix interactions that drive the cells of a prospective organ to differentiate and collectively organize in three dimensions. Generating organs in vitro from embryonic stem (ES) cells may provide a simplified system to decipher how these processes are orchestrated in time and space within particular and between neighboring tissues. Recently, this field of stem cell research has also gained considerable interest for its potential applications in regenerative medicine. Among human pathologies for which stem cell-based therapy is foreseen as a promising therapeutic strategy are many retinal degenerative diseases, like retinitis pigmentosa and age-related macular degeneration. Over the last decade, progress has been made in producing ES-derived retinal cells in vitro, but engineering entire synthetic retinas was considered beyond reach. Recently however, major breakthroughs have been achieved with pioneer works describing the extraordinary self-organization of murine and human ES cells into a three dimensional structure highly resembling a retina. ES-derived retinal cells indeed assemble to form a cohesive neuroepithelial sheet that is endowed with the intrinsic capacity to recapitulate, outside an embryonic environment, the main steps of retinal morphogenesis as observed in vivo. This represents a tremendous advance that should help resolving fundamental questions related to retinogenesis. Here, we will discuss these studies, and the potential applications of such stem cell-based systems for regenerative medicine.  相似文献   

13.
远交系小鼠胚胎干细胞系的建立及嵌合鼠的获得   总被引:2,自引:0,他引:2  
ES细胞(EmbryonicStemCells)是来源于小鼠早期胚胎的多潜能干细胞,它可以在体外大量培养。并以单细胞的形式注射到早期胚胎里,发育为嵌合体。到目前为止,通常使用的129小鼠品系是来源于近交系(inbred)小鼠的胚胎.与之相比,远交系小鼠应当具有较强的生命力和抗病能力。曾有人报道过建成了远交系小鼠胚胎干细胞系,但是尚没有见到获得嵌合鼠的报道。有人甚至认为:由于不同品系小鼠所具有的遗传背景不同,有的小鼠不能建成ES细胞系。最近,本实验室在这方面做了有益的探索,成功地建成了远交系小鼠胚胎干细胞系,并在这里报导首例用远交系小鼠胚胎干细胞系培育成功嵌合体小鼠。采用源于Swiss小鼠远交群的昆明(KM)品系小鼠囊胚建成了三个小鼠胚胎干细胞系(KE1.KE2.KE5)。核型正常率均达到70%以上。自第八代起分批冻存,复苏后,培养至第12代,消化成单细胞,通过囊胚显微注射,将其注射到615品系小鼠胚胎。在幸存的幼鼠中获得了一只来源于KE1细胞的嵌合鼠(Table1).其毛色表现为受体鼠(615)的白色中嵌合有供体鼠(KM)的黑褐色(PlateI-A).嵌合鼠与受体鼠的杂交后代鼠中仍然出现了受体鼠的毛色类型(  相似文献   

14.
We report here the identification and characterization of a novel paired-like homeobox-containing gene (Ehox). This gene, identified in embryonic stem (ES) cells, is differentially expressed during in vitro ES cell differentiation. We have assessed Ehox function using the ES cell in vitro differentiation system. This has involved molecular and biological analyses of the effects of sense or antisense Ehox expression (using episomal vectors) on ES cell differentiation. Analysis of antisense Ehox-expressing ES cells indicates that they are unable to express marker genes associated with hematopoietic, endothelial, or cardiac differentiation following removal of leukemia inhibitory factor. In contrast, overexpression of Ehox using the sense construct accelerated the appearance of these differentiation markers. ES cell self-renewal and differentiation assays reveal that inhibition of Ehox activity results in the maintenance of a stem cell phenotype in limiting concentrations of leukemia inhibitory factor and the almost complete impairment of the cardiomyocyte differentiation capacity of these cells. We therefore conclude that Ehox is a novel homeobox-containing gene that is essential for the earliest stages of murine ES cell differentiation.  相似文献   

15.
Mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells have the ability to differentiate in vitro into various cell lineages including neurons. The differentiation of these cells into neurons has potential applications in regenerative medicine. Previously, we reported that a chick dorsal root ganglion (DRG)-conditioned medium (CM) promoted the differentiation of mouse ES and iPS cells into neurons. Here, we used real-time PCR to investigate the differentiation patterns of ES and iPS cells into neurons when DRG-CM was added. DRG-CM promoted the expression levels of βIII-tubulin gene (a marker of postmitotic neurons) in ES and iPS cells. ES cells differentiated into neurons faster than iPS cells, and the maximum peaks of gene expression involved in motor, sensory, and dopaminergic neurons were different. Rho kinase (ROCK) inhibitors could be very valuable at numerous stages in the production and use of stem cells in basic research and eventual cell-based therapies. Thus, we investigated whether the addition of a ROCK inhibitor Y-27632 and DRG-CM on the basis of the differentiation patterns promotes the neuronal differentiation of ES cells. When the ROCK inhibitor was added to the culture medium at the initial stages of cultivation, it stimulated the neuronal differentiation of ES cells more strongly than that stimulated by DRG-CM. Moreover, the combination of the ROCK inhibitor and DRG-CM promoted the neuronal differentiation of ES cells when the ROCK inhibitor was added to the culture medium at day 3. The ROCK inhibitor may be useful for promoting neuronal differentiation of ES cells.  相似文献   

16.
Embryonic stem (ES) cells hold promise as a source for cell transplantation treatment of diseases such as type I diabetes. Further, cells releasing bioactive substances from ES cell progeny may be concentrated and purified for clinical applications. Although ES cell lines that express reporter genes have been established to isolate cells releasing bioactive substances, other difficulties must be overcome before these genetically modified cells can be used for gene therapy in human patients. Fluorescence- or magnetic-activated cell sorters are commonly used to isolate specific cells using antibodies against cell surface antigens. However, for some cells, such as insulin-producing beta cells, specific surface antigens have not yet been identified. In this study, we developed a simple and efficient method to identify and purify insulin- and alpha-fetoprotein-producing cells. A nitrocellulose membrane treated with anti-insulin or anti-alpha-fetoprotein antibodies was placed on a cell layer to trap insulin or alpha-fetoprotein released from the cells. The location of specific substance-producing cells was identified by immunostaining the membrane. The insulin-releasing cells were selectively collected from the culture dish using a cloning ring and transferred to another culture plate.  相似文献   

17.
Molecular and cellular analysis of early mammalian development is compromised by the experimental inaccessibility of the embryo. Pluripotent embryonic stem (ES) cells are derived from and retain many properties of the pluripotent founder population of the embryo, the inner cell mass. Experimental manipulation of these cells and their environment in vitro provides an opportunity for the development of differentiation systems which can be used for analysis of the molecular and cellular basis of embryogenesis. In this review we discuss strengths and weaknesses of the available ES cell differentiation methodologies and their relationship to events in vivo. Exploitation of these systems is providing novel insight into embryonic processes as diverse as cell lineage establishment, cell progression during differentiation, patterning, morphogenesis and the molecular basis for cell properties in the early mammalian embryo.  相似文献   

18.
Challenges of primate embryonic stem cell research   总被引:2,自引:0,他引:2  
Embryonic stem (ES) cells hold great promise for treating degenerative diseases, including diabetes, Parkinson's, Alzheimer's, neural degeneration, and cardiomyopathies. This research is controversial to some because producing ES cells requires destroying embryos, which generally means human embryos. However, some of the surplus human embryos available from in vitro fertilization (IVF) clinics may have a high rate of genetic errors and therefore would be unsuitable for ES cell research. Although gross chromosome errors can readily be detected in ES cells, other anomalies such as mitochondrial DNA defects may have gone unrecognized. An insurmountable problem is that there are no human ES cells derived from in vivo-produced embryos to provide normal comparative data. In contrast, some monkey ES cell lines have been produced using in vivo-generated, normal embryos obtained from fertile animals; these can represent a "gold standard" for primate ES cells. In this review, we argue a need for strong research programs using rhesus monkey ES cells, conducted in parallel with studies on human ES and adult stem cells, to derive the maximum information about the biology of normal stem cells and to produce technical protocols for their directed differentiation into safe and functional replacement cells, tissues, and organs. In contrast, ES cell research using only human cell lines is likely to be incomplete, which could hinder research progress, and delay or diminish the effective application of ES cell technology to the treatment of human diseases.  相似文献   

19.
胚胎干细胞   总被引:4,自引:0,他引:4  
李凌松  王莉 《生命科学》2006,18(4):318-322
胚胎干细胞具有自我复制并分化为人体各种功能细胞的潜能。胚胎干细胞具有的独特生物学特性使其被广泛应用于生物学研究的各个领域,特别是发育学。同时,它潜在的医学应用也成为世界范围内的研究热点。但是,由于人胚胎干细胞的来源为植入前的早期胚胎,人胚胎干细胞自诞生之日起便倍受争议。本文将从胚胎干细胞的来源、特性、鉴定标准、增殖机理、应用前景以及研究本身涉及的伦理学争论给予概述。  相似文献   

20.
We have generated embryonic stem (ES) cells and transgenic mice carrying a tau-tagged green fluorescent protein (GFP) transgene under the control of a powerful promoter active in all cell types including those of the central nervous system. GFP requires no substrate and can be detected in fixed or living cells so is an attractive genetic marker. Tau-tagged GFP labels subcellular structures, including axons and the mitotic machinery, by binding the GFP to microtubules. This allows cell morphology to be visualized in exquisite detail. We test the application of cells derived from these mice in several types of cell-mixing experiments and demonstrate that the morphology of tau-GFP-expressing cells can be readily visualized after they have integrated into unlabeled host cells or tissues. We anticipate that these ES cells and transgenic mice will prove a novel and powerful tool for a wide variety of applications including the development of neural transplantation technologies in animal models and fundamental research into axon pathfinding mechanisms. A major advantage of the tau-GFP label is that it can be detected in living cells and labeled cells and their processes can be identified and subjected to a variety of manipulations such as electrophysiological cell recording.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号