首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The oxygen affinity of washed red cells suspended in their own plasma or in CSF has been studied to demonstrate a possible effect of CSF on the oxygen affinity of human haemoglobin. The CSF was found to reduce the oxygen affinity of haemoglobin significatively, and this was not imputable to the action of pH, PCO2, temperature, 2,3DPG A hypothesis to explain the data found and their clinical interest towards the regulation of brain oxygenation was formulated considering the Monod-Wyman-Changeux model and the effect of solutions on proteins.  相似文献   

3.
We have hypothesized a state of zinc deficiency in sickle cell disease (SCD). This could at least partially explain the growth problems, hypogonadism, and slow healing leg ulcers associated with SCD. Preliminary findings revealed abnormally low red blood cell zinc levels in 10 of 16 patients studied. Before suggesting zinc supplementation in SCD we thought it important to look at the effect of zinc on red cell metabolism and function. It was found that zinc chloride added to normal and SCD blood to a final concentration of 1.5 × 10?3 M caused a left-shift of the blood oxygen affinity curve (increased oxygen affinity) varying from 1.5 to 3.5 mm Hg change in half saturation (p50). This curve shifting property has important implications for SCD since recent work with cyanate suggests that such shifts are very beneficial in treatment of SCD. Thus zinc supplementation in SCD, in addition to its potential role in correcting wound healing and growth problems, may have a beneficial effect on the basic pathological process. Data are given which suggest that zinc and 2, 3-diphosphoglycerate may not be competing for the same site on the hemoglobin molecule.  相似文献   

4.
By introducing an additional H-bond in the alpha(1)beta(2) subunit interface or altering the charge properties of the amino acid residues in the alpha(1)beta(1) subunit interface of the hemoglobin molecule, we have designed and expressed recombinant hemoglobins (rHbs) with low oxygen affinity and high cooperativity. Oxygen-binding measurements of these rHbs under various experimental conditions show interesting properties in response to pH (Bohr effect) and allosteric effectors. Proton nuclear magnetic resonance studies show that these rHbs can switch from the oxy (or CO) quaternary structure (R) to the deoxy quaternary structure (T) without changing their ligation states upon addition of an allosteric effector, inositol hexaphosphate, and/or reduction of the ambient temperature. These results indicate that if we can provide extra stability to the T state of the hemoglobin molecule without perturbing its R state, we can produce hemoglobins with low oxygen affinity and high cooperativity. Some of these rHbs are also quite stable against autoxidation compared to many of the known abnormal hemoglobins with altered oxygen affinity and cooperativity. These results have provided new insights into the structure-function relationship in hemoglobin.  相似文献   

5.
6.
7.
Patients on a chronic hemodialysis regimen were studied with respect to their erythrocyte adaptation to anemia. Erythrocyte 2,3-diphosphoglycerate (DPG) concentration was suboptimal compared with that of anemic patients who were not uremic. In uremic patients erythrocyte 2,3-DPG correlated poorly with hemoglobin level but more strongly with plasma pH. Differences between observed levels of erythrocyte 2,3-DPG and the values predicted using data from other anemic patients also correlated with pH. Gradual correction of plasma pH with oral sodium bicarbonate resulted in a substantial increase in erythrocyte 2,3-DPG and a decrease in oxygen affinity. Therefore, maintenance of normal pH in uremic subjects may improve tissue oxygenation. On the other hand, the rapid correction of acidosis during dialysis resulted in increased oxygen affinity. This response was due to the direct effect of pH on oxygen affinity in the absence of a significant change in erythrocyte 2,3-DPG or adenosine triphosphate (ATP) during hemodialysis. Erythrocyte ATP but not 2,3-DPG correlated with serum inorganic phosphate in uremic subjects. A 21% reduction of serum phosphate produced by ingestion of aluminum hydroxide gel had no significant effect on these variables.  相似文献   

8.
9.
Ligand binding studies were made with hemoglobin (Hb) isolated from trematode species Gastrothylax crumenifer (Gc), Paramphistomum epiclitum (Pe), Explanatum explanatum (Ee), parasitic worms of water buffalo Bubalus bubalis, and Isoparorchis hypselobagri (Ih) parasitic in the catfish Wallago attu. The kinetics of oxygen and carbon monoxide binding show very fast association rates. Whereas oxygen can be displaced on a millisecond time scale from human Hb at 25 degrees C, the dissociation of oxygen from trematode Hb may require a few seconds to over 20 s (for Hb Pe). Carbon monoxide dissociation is faster, however, than for other monomeric hemoglobins or myoglobins. Trematode hemoglobins also show a reduced rate of autoxidation; the oxy form is not readily oxidized by potassium ferricyanide, indicating that only the deoxy form reacts rapidly with this oxidizing agent. Unlike most vertebrate Hbs, the trematodes have a tyrosine residue at position E7 instead of the usual distal histidine. As for Hb Ascaris, which also displays a high oxygen affinity, the trematodes have a tyrosine in position B10; two H-bonds to the oxygen molecule are thought to be responsible for the very high oxygen affinity. The trematode hemoglobins display a combination of high association rates and very low dissociation rates, resulting in some of the highest oxygen affinities ever observed.  相似文献   

10.
Synthetic 20-mer long non-overlapped peptides, from STEVOR protein, were tested in RBC binding assays for identifying STEVOR protein regions having high RBC binding activity and evaluating whether these regions inhibit Plasmodium falciparum in vitro invasion. Affinity constants, binding site number per cell and Hill coefficients were determined by saturation assay with high activity binding peptides (HABPs). HABP binding assays using RBCs previously treated with enzymes were carried out to study the nature of the receptor. The molecular weight of RBC surface proteins interacting with HABPs was determined by cross-linking assays and SDS-PAGE analysis. RBC binding assays revealed that peptides 30561 (41MKSRRLAEIQLPKCPHYNND60), 30562 (61PELKKIIDKLNEERIKKYIE80) and 30567 (161ASCCKVHDNYLDNLKKGCFG180) bound saturably and with high binding activity, presenting nanomolar affinity constants. HABP binding activity to RBCs previously treated with neuraminidase and trypsin decreased, suggesting that these peptides bound to RBC surface proteins and that such binding could be sialic acid dependent. Cross-linking and SDS-PAGE assays showed that the three HABPs specifically bound to 30 and 40 kDa molecular weight RBC membrane proteins. Peptides 30561, 30562 and 30567 inhibited P. falciparum in vitro invasion of red blood cells in a concentration-dependent way. Goat sera having STEVOR protein polymeric peptides antibodies inhibit parasite in vitro invasion depending on concentration. Three peptides localized in STEVOR N-terminal and central regions had high, saturable, binding activity to 30 and 40 kDa RBC membrane proteins. These peptides inhibited the parasite's in vitro invasion, suggesting that STEVOR protein regions are involved in P. falciparum invasion processes during intra-erythrocyte stage.  相似文献   

11.
12.
The mode of interaction of human hemoglobin (Hb) with the red cell membrane was investigated with special reference to the effect on oxygen binding properties and Hb-membrane binding constants. Compared to free native Hb, the membrane-bound native Hb showed a strikingly lowered oxygen affinity and smaller response to organic phosphates such as 2,3-diphosphoglycerate and inositol hexaphosphate. Similar effects of membrane binding were also observed for intermediately cooperative Hbs such as N-ethylmaleimide-treated Hb (NES-Hb) and iodoacetamide-treated Hb (AA-Hb), but very small effects were observed for non-cooperative Hb, i.e., carboxypeptidase A-treated Hb (des-His-Tyr Hb). The magnitude of the affinity lowering was in the order: NES-Hb greater than native Hb greater than AA-Hb much greater than des-His-Tyr Hb. In the presence of inositol hexaphosphate, the three chemically modified Hbs showed an increased oxygen affinity when bound to the red cell membrane, probably due to partial replacement of bound inositol hexaphosphate by membrane. The binding to membrane caused a slight decrease in cooperativity for native Hb, but no distinct change in cooperativity was observed for the three modified Hbs. These results imply: a) the red cell membrane binds to deoxyHb more strongly than to oxyHb; b) the difference in membrane binding affinity between oxyHb and deoxyHb is closely related to the quaternary structure change in the Hb molecule occurring upon oxygenation. The higher affinity of the membrane for deoxyHb than for oxyHb apparently disagrees with the conclusion drawn by earlier investigators. However, the present binding experiments by means of ultrafiltration proved that the red cell membrane actually binds to deoxyHb much more strongly than to oxyHb, validating the present conclusion based on oxygenation experiments. Our results are consistent with those obtained recently by other investigators using a synthetic peptide or the cytoplasmic fragment of red cell membrane band 3.  相似文献   

13.
14.
Temperature effects on oxygen affinity of human fetal blood   总被引:1,自引:0,他引:1  
In an effort to understand the effects of temperature changes on fetal oxygenation, the temperature effects were measured on oxygen affinity of whole blood from term human fetuses. The blood obtained was tonometered at delivery in two flasks gassed with 95% N2 (+ 5% CO2 or 20.9% + 5% CO2, and mixed aliquots from each flask in different proportions to obtain samples for analysis of PO2 and percent saturation. The oxyhaemoglobin dissociation curve was constructed and P50 determined at two or three different temperatures for each batch of blood. As temperature increased from 30 to 41 degrees C, human fetal blood bound O2 less avidly, the temperature coefficient for changes in P50 being 0.0255 per degree C. This temperature effect was similar to that in adult blood, although at any temperature O2 affinity of fetal blood was greater than that of the adult. Placental oxygen exchange could be significantly affected by changes in temperature such as occur during hypo- or hyperthermia, as with maternal exercise.  相似文献   

15.
Embryonic nucleated red cells of the rat have high ATP and 2,3-bisphosphoglycerate and relatively low oxygen affinity. During foetal life they are replaced by large non-nucleated red cells with high ATP, low bisphosphoglycerate and high oxygen affinity. After birth, small non-nucleated red cells with high bisphosphoglycerate and low oxygen affinity rapidly predominate.  相似文献   

16.
17.
18.
Summary Oxygen affinity and number of -SH groups of hemoglobins have rather constant values for hens belonging to Leghorn, Whiterock, Rhode Island Red, Sussex and Cornish breeds, and for hybrids between Rhode Island Red and Leghorn, irrespective of the breed. Number of -SH groups in red cell hemolysates amounts to 8 per mole Hb (7,88 – 8,48) , logp50=1,04–0,94; value of n for Leghorns is 1,70, for Whiterocks 2,80.This work was performed within the project 09.3.1 of Polish Academy of Sciences.  相似文献   

19.
The changes in structure and function of 2,3-diphosphoglycerate-hemoglobin (2,3-DPG-Hb) induced by Ln(3+) binding were studied by spectroscopic methods. The binding of lanthanide cations to 2,3-DPG is prior to that to Hb. Ln(3+) binding causes the hydrolysis of either one from the two phosphomonoester bonds in 2,3-DPG non-specifically. The results using the ultrafiltration method indicate that Ln(3+) binding sites for Hb can be classified into three categories: i.e. positive cooperative sites (N(I)), non-cooperative strong sites (N(S)) and non-cooperative weak sites (N(W)) with binding constants in decreasing order: K(I)>K(S)>K(W). The total number of binding sites amounts to about 65 per Hb tetramer. Information on reaction kinetics was obtained from the change of intrinsic fluorescence in Hb monitored by stopped-flow fluorometry. Fluctuation of fluorescence dependent on Ln(3+) concentration and temperature was observed and can be attributed to the successive conformational changes induced by Ln(3+) binding. The results also reveal the bidirectional changes of the oxygen affinity of Hb in the dependence on Ln(3+) concentration. At the range of [Ln(3+)]/[Hb]<2, the marked increase of oxygen affinity (P(50) decrease) with the Ln(3+) concentration can be attributed to the hydrolysis of 2,3-DPG, while the slight rebound of oxygen affinity in higher Ln(3+) concentration can be interpreted by the transition to the T-state of the Hb tetramer induced by Ln(3+) binding. This was indicated by the changes in secondary structure characterized by the decrease of alpha-helix content.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号