共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Histidine decarboxylase. Purification from fetal rat liver, immunologic properties, and histochemical localization in brain and stomach 总被引:3,自引:0,他引:3
Histidine decarboxylase from fetal rat liver was purified to near-homogeneity. The purified enzyme has a molecular weight of 210,000, and appears to contain two subunits with molecular weights of 145,000 and 66,000, respectively. The enzyme is inhibited by heavy metals such as Hg2+ and Zn2+ and sulfhydryl-reactive compounds such as 5,5'-dithiobis-2-nitrobenzoic acid. The enzyme is partially dependent on exogenous pyridoxal phosphate. Extensive dialysis results in 50% loss of enzyme activity which can be fully recovered by adding pyridoxal phosphate. Affinity of pyridoxal phosphate for the apoenzyme is 0.1 microM at pH 6.8. Antibody against purified histidine decarboxylase was raised in rabbits. The antibody has been employed in immunohistochemical studies to visualize histidine decarboxylase containing cells and neuronal processes in rat stomach and brain, respectively. Immunologic studies indicate that histidine decarboxylase from brain, gastric mucosa, and fetal rat liver share common antigenic properties. 相似文献
3.
Histidine ammonia-lyase (histidase; HutH) has been purified to homogeneity from Streptomyces griseus and the N-terminal amino acid (aa) sequence used to clone the histidase-encoding structural gene, hutH. The purified enzyme shows typical saturation kinetics and is inhibited competitively by D-histidine and histidinol phosphate. High concentrations of K.cyanide inactivate HutH unless the enzyme is protected by the substrate or histidinol phosphate. On the basis of the nucleotide sequence, the hutH structural gene would encode a protein of 53 kDa with an N terminus identical to that determined for the purified enzyme. Immediately upstream from hutH is a region that strongly resembles a class of Streptomyces promoters active during vegetative growth; however, there is no obvious ribosome-binding site adjacent to the hutH translation start codon. The deduced aa sequence of an upstream partial open reading frame shows no similarity with other proteins, including HutP of Bacillus subtilis and HutU of Pseudomonas putida. Promoter-probe analysis indicates that promoter activity maps within the DNA surrounding the hutH start codon. Pairwise comparisons of the primary structures of bacterial and mammalian histidases, together with the unique kinetic properties and gene organization, suggest that streptomycete histidase may represent a distinct family of histidases. 相似文献
4.
5.
6.
Fructokinase from rat liver. I. Purification and properties 总被引:3,自引:0,他引:3
7.
Kinetic and inhibition studies of partially purified deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76, AdR kinase) from rat liver mitochondria were performed, including reaction properties, specificity of phosphate donors, phosphate acceptors, influence of nucleotides, nucleosides and their derivatives. The results were compared with those obtained from partially purified AdR kinase from rat liver cytosol. 相似文献
8.
p-Nitrophenol conjugating activity associated with liver microsomal UDP-glucuronosyltransferase (EC 2.4.1.17) was purified 150- to 200-fold from cell-free homogenates. The purification scheme included solubilization with the nonionic detergent Lubrol WX, anion exchange chromatography at pH 6.0 and 7.5, and affinity chromatography with UDP-hexanolamine Sepharose 4B. The enzyme purified as a phospholipid-protein complex and was shown to consist of a single polypeptide chain of molecular weight 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid analysis indicated approximately 531 mol of amino acids/59,000 g of enzyme and a molar ratio of nonpolar to polar residues of 1.08. During fractionation, the enzyme displayed instability with such steps as gel filtration, dialysis, or ultrafiltration of dilute samples; however, upon adsorption to ion exchange resins or storage in concentrated form, the enzyme was reasonably stable. The active lipoprotein complex showed both size and charge heterogeneity as judged by gel filtration and electrofocusing. Three forms of the enzyme resolved by isoelectric focusing had isoelectric points which averaged pH 6.68, 6.56, and 6.31. Polypeptide compositions of these electrophoretically distinct phospholipid protein complexes were indistinguishable on the basis of sodium dodecyl sulfate-polyacryl-amide gel electrophoresis, suggesting that the charge heterogeneity may be the result of differences in the phospholipid content of the lipoprotein complex. 相似文献
9.
Asparagine synthetase (L-aspartate:ammonia ligase (AMP-forming, EC 6.3.1.1) activity in rat liver increased when the animals were put on a low casein diet. The enzyme was purified about 280-fold from the supernatant of rat liver homogenate by a procedure comprising ammonium sulfate fractionation. DEAE-Sepharose column chromatography, and Sephadex G-100 gel filtration. The optimal pH of the enzyme was in the range 7.4-7.6 with glutamine as an amide donor. The molecular weight was estimated to be approximately 110,000 by gel filtration. Chloride ion was required for the enzyme activity. The apparent Km values for L-aspartate, L-glutamine, ammonium chloride, ATP, and Cl- were calculated to be 0.76, 4.3, 10, 0.14, and 1.7 mM, respectively. The activity was inhibited by L-asparagine, nucleoside triphosphates except ATP, and sulfhydryl reagents. It has been observed that the properties of asparagine synthetase from rat liver are not so different from those of tumors such as Novikoff hepatoma and RADA 1. 相似文献
10.
S Traniello 《Biochimica et biophysica acta》1974,341(1):129-137
11.
12.
13.
Purification and properties of deoxyadenosine kinase from rat liver mitochondria. I. Purification and physical properties 总被引:1,自引:0,他引:1
Deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76, AdR kinase) from rat liver mitochondria has been partially purified and compared with partially purified AdR kinase from the cytosol of the same biological material. Some physical properties of both enzymes, including molecular weight, gel electrophoresis and gel isoelectric focusing were investigated and considerable differences between these data for mitochondrial and cytosol AdR kinase were found. 相似文献
14.
R L Khandelwal J R Vandenheede E G Krebs 《The Journal of biological chemistry》1976,251(16):4850-4858
The phosphoprotein phosphatase(s) acting on muscle phosphorylase a was purified from rabbit liver by acid precipitation, high speed centrifugation, chromatography on DEAE-Sephadex A-50, Sephadex G-75, and Sepharose-histone. Enzyme activity was recovered in the final step as two distinct peaks tentatively referred to as phosphoprotein phosphatases I and II. Each phosphatase showed a single broad band when examined by sodium dodecyl sulfate gel electrophoresis; the molecular weights derived by this method were approximately 30,500 for phosphoprotein phosphatase I and 34,000 for phosphoprotein phosphatase II. The s20, w value for each enzyme was 3.40. Using this value and values for the Stokes radii, the molecular weight for each enzyme was calculated to be 34,500. Both phosphatases, in addition to catalyzing the conversion of phosphorylase a to b, also catalyzed the dephosphorylation of glycogen synthase D, activated phosphorylase kinase, phosphorylated histone, phosphorylated casein, and the phosphorylated inhibitory component of troponin (TN-I). The relative activities of the phosphatases with respect to phosphorylase a, glycogen synthase D, histone, and casein remained essentially constant throughout the purification. The activities of both phosphatases with different substrates decreased in parallel when they were denatured by incubation at 55 degrees and 65 degrees. The Km values of phosphoprotein phosphatase I for phosphorylase a, histone, and casein were lower than the values obtained for phosphoprotein phosphatase II. With glycogen synthase D as substrate, each enzyme gave essentially the same Km value. Utilizing either enzyme, it was found that activity toward a given substrate was inhibited competitively by each of the alternative substrates. The results suggest that phosphoprotein phosphatases I and II are each active toward all of the substrates tested. 相似文献
15.
CDP-diglyceride:inositol transferase, which catalyzes the final step of the de novo synthesis of phosphatidylinositol, was solubilized by sodium cholate from microsomes prepared from rat liver and purified by ammonium sulfate fractionation, sucrose density gradient centrifugation, and DEAE-cellulose column chromatography. Addition of phospholipid during the purification and the assay procedures prevented irreversible loss of the enzyme activity to some extent. The resulting preparation was nearly homogeneous as judged by polyacrylamide gel electrophoresis. The recovery of the purified enzyme from the microsomal fraction was 3 to 3.3% with respect to activity and 0.12% with respect to amount of protein. The molecular weight of the enzyme was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 60,000. The purified enzyme required exogenous phospholipds for its activity. Various phospholipid classes activated the enzyme rather nonspecifically. The Km for myo-inositol was 2.5 X 10(-3) M and that for CDP-diglyceride was 1.7 X 10(-4) M. The pH optimum was 8.6. The enzyme required Mm2+ or Mg2+ for activity. The optimal concentration of Mn2+ for activation was 0.5 mM, while the activity in the presence of Mg2+ increased up to 20 mM. The enzyme was inhibited by thiol-reactive reagents. There was a competition for inositol by inosose-2 but not by scyllitol. 相似文献
16.
V P Titanji 《Biochimica et biophysica acta》1977,481(1):140-151
A phosphoprotein phosphatase (phosphoprotein phosphohydrolase, EC 3.1.3.16) has been partially purified from rat liver homogenates by (NH4)2SO4 and ethanol precipitations followed by DEAE-cellulose and Sepharose 6B chromatography. The phosphoprotein phosphatase is capable of cleaving [32P]phosphate from radiolabelled phosphopyruvate kinase (type L) (EC 2.7.1.40), phosphohistones, and phosphoprotamine. However, it did not detectably dephosphorylate ATP, ADP, DL-phosphorylserine or beta-glycerophosphate. Dephosphorylation of [32P]phosphopyruvate kinase was stimulated by divalent cations and inhibited by ATP, ADP, Fru-1,6-P2, and orthophosphate. Divalene cations could reverse inhibition induced by ADP or ATP. At least one function of the phosphoprotein phosphatase may be to remove phosphate groups from the phosphorylated form of pyruvate kinase in the liver. 相似文献
17.
Heme oxygenase was purified to apparent homogeneity from liver microsomes of rats which had been treated with either cobaltous chloride or hemin to induce heme oxygenase in the liver and the purified preparations from either rats showed an apparent molecular weight of about 200,000 when estimated by gel filtration on a column of Sephadex G-200, and gave a minimum molecular weight of about 32,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The hepatic heme oxygenase could bind heme to form a heme . heme oxygenase complex showing an absorption peak at 405 nm, and the extinction coefficient at 405 nm of the heme . heme oxygenase complex was 140 mM-1 cm-1. The heme bound to the hepatic heme oxygenase protein was easily converted to biliverdin when the complex was incubated with the NADPH-cytochrome c reductase system in air. The hepatic heme oxygenase appears to have characteristics essentially similar to those of the splenic heme oxygenase (Yoshida, T., and Kikuchi, G. (1978) J. Biol. Chem. 253, 4224 and 4230). The heme oxygenase preparation which was purified from the cobalt-treated rats contained a small amount of cobaltic protoporphyrin, indicating that cobalt protoporphyrin was synthesized in these rats. 相似文献
18.
1) A lysosomal protease, a new cathepsin that inactivates glucose-6-phosphate dehydrogenase [EC 1.1.1.49] and some other enzymes and differs from cathepsin B [EC 3.4.22.1] was purified about 2,200-fold from crude extracts of rat liver by cell-fractionation, freezing and thawing, acetone treatment, gel filtration, and DEAE Sephadex and CM-Sephadex column chromatographies. 2) The new cathepsin was markedly activated by the thiol-reagent, 2-mercaptoethanol and inhibited by monoiodoacetate. 3) The molecular weight of the new cathepsin was found by Sephadex G-75 column chromatography to be 22,000, which is smaller than that of cathepsin B. 4) The optimum pH of the enzyme for inactivation of glucose-6-phosphate dehydrogenase was pH 5.0--5.5. The enzyme was unstable in alkali and on heat treatment. 5) The rates of inactivation of glucose-6-phosphate dehydrogenase, apo-ornithine aminotransferase [EC 2.6.1.13], apo-tyrosine aminotransferase [EC 2.6.1.5], apo-cystathionase [EC 4.4.1.1], glucokinase [EC 2.7.1.2], glyceraldehyde-3-phosphate dehydrogenase [EC 1.2.1.12], and malate dehydrogenase [EC 1.1.1.37] by the new cathepsin were higher than those by cathepsin B. However aldolase [EC 4.1.2.13] was inactivated more rapidly by cathepsin B than by the new cathepsin. Lactate dehydrogenase [EC 1.1.1.27], glutamate dehydrogenase [EC 1.4.1.2] and alcohol dehydrogenase [EC 1.1.1.1] were not inactivated by either cathepsin. Unlike cathepsin B, the new cathepsin scarcely hydrolyzes N-substituted derivatives of arginine. 相似文献
19.
S Raeburn J F Collins H M Moon E S Maxwell 《The Journal of biological chemistry》1971,246(4):1041-1048
20.
delta-Aminolevulinic acid synthetase has been purified from liver mitochondria of young, uninduced rats. After nonionic detergent solubilization of mitochondrial inner membrane-matrix fractions, the enzyme was purified to a specific activity of approximately 2,000 nmol of delta-aminolevulinic acid formed/h/mg of protein at 30 degrees C, by means of ammonium sulfate precipitation, diethylaminoethyl cellulose chromatography, Sephacryl chromatography, and preparative gel electrophoresis. The purified enzyme preparation thus obtained was apparently homogeneous as judged by its migration as a single band with a molecular weight of 58,000 +/- 6,000 upon electrophoresis in sodium dodecyl sulfate polyacrylamide gels. The native enzyme probably exists as a dimer with a molecular weight of approximately 120,000. A pH optimum of 7.5 and an isoelectric point of 4.5 were also determined. Both monovalent cations and hemin strongly inhibited the activity of the purified enzyme. 相似文献