共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular basis of regioselectivity of cytochrome P450 monooxygenases from Bacillus megaterium (CYP102A1) with its flexible and widely opened active site is still not well understood. In the present work (-)-alpha-pinene bound complexes with two triple mutants were modeled to elucidate the contribution of the three major factors that mediate selectivity: active site shape, protein flexibility, and chemical reactivity of the substrate. For the triple mutant A74G F87V L188Q (GVQ), one stable, productive conformation of the substrate (conformation I) was identified by multiple molecular dynamics simulations. The model predicts pinene epoxide as a major product (42% pinene oxide, 23% verbenol) which is in agreement with the experimental product profile (70% pinene oxide, 20% verbenol). In contrast, for the triple mutant A74G F87G L188Q (GGQ) two stable productive substrate conformations were identified (conformations IIa and IIb), and verbenol was predicted as major product (81% verbenol, 16% myrtenol), which is in agreement with experimental results (77% verbenol, 10% myrtenol). The effect of chemical reactivity of the substrate was demonstrated by comparison of (-)-alpha-pinene to its regioisomer (-)-beta-pinene, where the product profile is shifted from 68% pinocarveol and 32% myrtanal in mutant GVQ, to 40% pinocarveol and 60% myrtanal in mutant GGQ. Our results strongly suggest a major role of residue 87 in anchoring (-)-alpha-pinene during substrate binding which provides a simple and elegant rationalization of the dynamic structure of this enzyme-substrate complex. 相似文献
2.
利用RT-PCR从Rhizopus oryzaeGX-08总RNA中克隆到糖化酶的淀粉结合域(SBD)基因(sbd),将该基因片段插入α-淀粉酶(CN7A)基因cn7a的5′端构建融合表达质粒pSE-sbdcn7a。嵌合酶SBD-CN7A在Escherichia coliJM109表达,并经Ni-NTA、Sephacryl S300纯化。酶学性质研究表明:嵌合酶在最适作用条件方面与原始酶并无明显差别;在以生玉米粉为底物时,其比酶活提高了8.7倍,而以可溶性淀粉为底物时其比酶活是原始酶的1.8倍,Km也从3.784 g/L降低为2.234 g/L;嵌合酶在65℃下的半衰期从10 min缩短为4 min。结果表明,淀粉结合域SBD的融合赋予了α-淀粉酶CN7A水解生淀粉的能力。 相似文献
3.
Giovanna Di Nardo Andrea Fantuzzi Anastasia Sideri Paola Panicco Carlo Sassone Carlo Giunta Gianfranco Gilardi 《Journal of biological inorganic chemistry》2007,12(3):313-323
This work provides functional data showing that the bacterial CYP102A1 recognises compounds metabolised by human CYP3A4, CYP2E1
and CYP1A2 and is able to catalyse different reactions. Wild-type cytochrome CYP102A1 from Bacillus megaterium is a catalytically self-sufficient enzyme, containing an NADPH-dependent reductase and a P450 haem domain fused in a single
polypeptidie chain. An NADPH-dependent method (Tsotsou et al. in Biosens. Bioelectron. 17:119–131, 2002) together with spectroscopic assays were applied to investigate the catalytic activity of CYP102A1 towards 19 xenobiotics,
including 17 commercial drugs. These molecules were chosen to represent typical substrates of the five main families of drug-metabolising
human cytochromes P450. Liquid chromatography–mass spectrometry analysis showed that CYP102A1 catalyses the hydroxylation
of chlorzoxazone, aniline and p-nitrophenol, as well as the N-dealkylation of propranolol and the dehydrogenation of nifedipine. These drugs are typical
substrates of human CYP2E1 and CYP3A4. The K
M values calculated for these compounds were in the millimolar range: 1.21 ± 0.07 mM for chlorzoxazone, 2.52 ± 0.08 mM for
aniline, 0.81 ± 0.04 mM for propranolol. The values of v
max for chlorzoxazone and propranolol were 46.0 ± 9.0 and 7.6 ± 3.4 nmol min−1 nmol−1, respectively. These values are higher then those measured for the human enzymes. The v
max value for aniline was 9.4 ± 1.3 nmol min−1 nmol−1, comparable to that calculated for human cytochromes P450. The functional data were found to be in line with the sequence
alignments, showing that the identity percentage of CYP102A1 with CYP3A4 and CYP2E1 is higher than that found for CYP1A2,
CYP2C9 and CYP2D6 families. 相似文献
4.
5.
CYP102s represent a family of natural self-sufficient fusions of cytochrome P450 and cytochrome P450 reductase found in some bacteria. One member of this family, named CYP102A1 or more traditionally P450BM-3, has been widely studied as a model of human P450 cytochromes. Remarkable detail of P450 structure and function has been revealed using this highly efficient enzyme. The recent rapid expansion of microbial genome sequences has revealed many relatives of CYP102A1, but to date only two from Bacillus subtilis have been characterized. We report here the cloning and expression of CYP102A5, a new member of this family that is very closely related to CYP102A4 from Bacillus anthracis. Characterization of the substrate specificity of CYP102A5 shows that it, like the other CYP102s, will metabolize saturated and unsaturated fatty acids as well as N-acylamino acids. CYP102A5 catalyzes very fast substrate oxidation, showing one of the highest turnover rates for any P450 monooxygenase studied so far. It does so with more specificity than other CYP102s, yielding primarily ω-1 and ω-2 hydroxylated products. Measurement of the rate of electron transfer through the reductase domain reveals that it is significantly faster in CYP102A5 than in CYP102A1, providing a likely explanation for the increased monooxygenation rate. The availability of this new, very fast fusion P450 will provide a great tool for comparative structure-function studies between CYP102A5 and the other characterized CYP102s. 相似文献
6.
Comparative study of acetaldehyde, furfural and 5-hydroxymethyl furfural from celluloses which differed in crystallinity was made by pyrolytic gas chromatography.Pyrolysis of tobacco cellulose at 200~300°C resulted in rapid increase in the yields of furfurals from the amorphous regions in comparison with that from the crystalline regions. At 500°C, however, acetaldehyde was obtained in higher yields from microcrystalline cellulose than that from tobacco cellulose under the same condition.In thermogravimetric analysis, the threshold temperature for the pyrolysis of tobacco cellulose was lower than that of microcrystylline cellulose. These results showed that the yields of the volatile compounds from pyrolysis of cellulose depended on temperature and crystallinity. 相似文献
7.
8.
Deficiency of drug glucuronidation in the cat is one of the major reasons why this animal is highly sensitive to the side effects of drugs. The characterization of cytochrome P450 isoforms belonging to the CYP1A subfamily, which exhibit important drug oxidation activities such as activation of pro-carcinogens, was investigated. Two cDNAs, designated CYP1A-a and CYP1A-b, corresponding to the CYP1A subfamily were obtained from feline liver. CYP1A-a and CYP1A-b cDNAs comprise coding regions of 1554 bp and 1539 bp, and encode predicted amino acid sequences of 517 and 512 residues, respectively. These amino acid sequences contain a heme-binding cysteine and a conserved threonine. The cDNA identities, as well as the predicted amino acid sequences containing six substrate recognition sites, suggest that CYP1A-a and CYP1A-b correspond to CYP1A1 and CYP1A2, respectively. This was confirmed by the kinetic parameters of the arylhydrocarbon hydroxylase and 7-ethoxyresorufin O-deethylase activities of expressed CYPs in yeast AH22 cells and by the tissue distribution of each mRNA. However, theophylline 3-demethylation is believed to be catalyzed by CYP1A1 in cats, based on the high V(max) and low K(m) seen, in contrast to other animals. Because feline CYP1A2 had a higher K(m) for phenacetin O-deethylase activity with acetaminophen, which cannot be conjugated with glucuronic acid due to UDP-glucuronosyltransferase deficiency, it is supposed that the side effects of phenacetin as a result of toxic intermediates are severe and prolonged in cats. 相似文献
9.
Fructose-6-phosphate aldolase from Escherichia coli is a member of a small enzyme subfamily (MipB/TalC family) that belongs to the class I aldolases. The three-dimensional structure of this enzyme has been determined at 1.93 A resolution by single isomorphous replacement and tenfold non-crystallographic symmetry averaging and refined to an R-factor of 19.9% (R(free) 21.3%). The subunit folds into an alpha/beta barrel, with the catalytic lysine residue on barrel strand beta 4. It is very similar in overall structure to that of bacterial and mammalian transaldolases, although more compact due to extensive deletions of additional secondary structural elements. The enzyme forms a decamer of identical subunits with point group symmetry 52. Five subunits are arranged as a pentamer, and two ring-like pentamers pack like a doughnut to form the decamer. A major interaction within the pentamer is through the C-terminal helix from one monomer, which runs across the active site of the neighbouring subunit. In classical transaldolases, this helix folds back and covers the active site of the same subunit and is involved in dimer formation. The inter-subunit helix swapping appears to be a major determinant for the formation of pentamers rather than dimers while at the same time preserving importing interactions of this helix with the active site of the enzyme. The active site lysine residue is covalently modified, by forming a carbinolamine with glyceraldehyde from the crystallisation mixture. The catalytic machinery is very similar to that of transaldolase, which together with the overall structural similarity suggests that enzymes of the MipB/TALC subfamily are evolutionary related to the transaldolase family. 相似文献
10.
11.
Kurt L. Harris Raine E.S. Thomson Yosephine Gumulya Gabriel Foley Saskya E. Carrera-Pacheco Parnayan Syed Tomasz Janosik Ann-Sofie Sandinge Shalini Andersson Ulrik Jurva Mikael Bodn Elizabeth M.J. Gillam 《Molecular biology and evolution》2022,39(6)
The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts. 相似文献
12.
Benjamin Rowlatt Jake A. Yorke Anthony J. Strong Christopher J. C. Whitehouse Stephen G. Bell Luet-Lok Wong 《蛋白质与细胞》2011,2(8):656-671
Fatty acid binding and oxidation kinetics for wild type P450BM3 (CYP102A1) from Bacillus megaterium have been found to display chain length-dependent homotropic behavior. Laurate and 13-methyl-myristate display Michaelis-Menten behavior while there are slight deviations with myristate at low ionic strengths. Palmitate shows Michaelis-Menten kinetics and hyperbolic binding behavior in 100 mmol/L phosphate, pH 7.4, but sigmoidal kinetics (with an apparent intercept) in low ionic strength buffers and at physiological phosphate concentrations. In low ionic strength buffers both the heme domain and the full-length enzyme show complex palmitate binding behavior that indicates a minimum of four fatty acid binding sites, with high cooperativity for the binding of the fourth palmitate molecule, and the full-length enzyme showing tighter palmitate binding than the heme domain. The first flavin-to-heme electron transfer is faster for laurate, myristate and palmitate in 100 mmol/L phosphate than in 50 mmol/L Tris (pH 7.4), yet each substrate induces similar high-spin heme content. For palmitate in low phosphate buffer concentrations, the rate constant of the first electron transfer is much larger than k cat. The results suggest that phosphate has a specific effect in promoting the first electron transfer step, and that P450BM3 could modulate Bacillus membrane morphology and fluidity via palmitate oxidation in response to the external phosphate concentration. 相似文献
13.
PDZ domain scaffold proteins are capable of assembling macromolecular protein complexes in diverse cellular processes through PDZ-mediated binding to a short peptide fragment at the carboxyl tail of target proteins. How each PDZ domain specifically recognizes its target protein(s) remains a major conceptual question, as at least a few out of the several hundred PDZ domains in each eukaryotic genome share overlapping binding properties with any given target protein. Here, we show that the domain-swapped dimerization of zonula occludens-1 PDZ2 generates a distinct interface that functions together with the well-separated canonical carboxyl tail-binding pocket in each PDZ unit in binding to connexin43 (Cx43). We further demonstrate that the charge-charge interaction network formed by residues in the PDZ dimer interface and upstream residues of the Cx43 peptide not only provides the unprecedented interaction specificity for the complex but may also function as a phosphorylation-mediated regulatory switch for the dynamics of the Cx43 gap junctions. Finally, we provide evidence that such domain-swapped dimer assembly also occurs in other PDZ domain scaffold proteins. Therefore, our findings present a new paradigm for understanding how some PDZ domain proteins specifically bind to and regulate the functions of their target proteins. 相似文献
14.
The flavonolignan silybin and its derivative dehydrosilybin have been proposed as candidate UV-protective agents in skin care
products. This study addressed the effect of silybin and dehydrosilybin on the activity of cytochrome P450 isoform CYP1A1
in human keratinocytes (HaCaT) and human hepatoma cells (HepG2). CYP1A1 catalytic activity was assessed as O-deethylation of 7-ethoxyresorufin using fluorescence detection. Silybin and dehydrosylibin inhibited basal and dioxin-inducible
CYP1A1 catalytic activity in both cell lines used. The inhibitory effect of tested compounds was more pronounced in HaCaT
cells than in HepG2 cells, and dehydrosilybin was a much stronger inhibitor than silybin. Analyses on CYP1A1 human recombinant
protein yielded IC50 values of 22.9 ± 4.7 μmol/L and 0.43 ± 0.04 μmol/L for silybin and dehydrosilybin, respectively. Since CYP1A enzymes are
some of the most prominent actors in the process of chemically induced carcinogenesis, the inhibitory activity of the flavonolignans
tested against CYP1A1 favors their use as cytoprotective agents in terms of skin and hepatic metabolism. In addition, the
capability of dehydrosilybin to inhibit CYP1A1 in submicromolar concentrations makes this compound a potential biological
probe in CYP1A1 analyses. 相似文献
15.
由于外源化合物能诱导鱼类CYPIA(P4501A)的表达,因而它广泛被用作评价水环境污染生物标记物.利用RT-PCR结合RACE技术从大黄鱼(Larimichthys crocea)肝脏克隆了CYP1A基因全长cDNA序列.经分析,该cDNA的5'末端有175 bp的非翻译区.开放阅读框为1 566 bp,编码521个氨基酸和一个终止密码子,3'末端有857 bp的非翻译区,3'非翻译区有一个多聚腺苷酸信号及两个与mRNA的快速降解有关的AUUUA序列.推测大黄鱼CYP1A的氨基酸序列和欧洲鲈鱼的相似度最高迭89.6%.用RT-PCR检测大黄鱼CYP1A的表达特征发现,在所检测的9个组织中均有表达,以肝脏、消化道、脾脏和肾脏的表达量较高. 相似文献
16.
Steckelbroeck S Watzka M Lütjohann D Makiola P Nassen A Hans VH Clusmann H Reissinger A Ludwig M Siekmann L Klingmüller D 《Journal of neurochemistry》2002,83(3):713-726
Dehydroepiandrosterone and its sulphate are important factors for vitality, development and functions of the CNS. They were found to be subjects to a series of enzyme-mediated conversions within the rodent CNS. In the present study, we were able to demonstrate for the first time that membrane-associated dehydroepiandrosterone 7alpha-hydroxylase activity occurs within the human brain. The cytochrome P450 enzyme demonstrated a sharp pH optimum between 7.5 and 8.0 and a mean KM value of 5.4 micro m, corresponding with the presence of the oxysterol 7alpha-hydroxylase CYP7B1. Real-time RT-PCR analysis verified high levels of CYP7B1 mRNA expression in the human CNS. The additionally observed conversion of dehydroepiandrosterone via cytosolic 17beta-hydroxysteroid dehydrogenase activity could be ascribed to the activity of an enzyme with a broad pH optimum and an undetectably high KM value. Subsequent experiments with cerebral neocortex and subcortical white matter specimens revealed that 7alpha-hydroxylase activity is significantly higher in the cerebral neocortex than in the subcortical white matter (p < 0.0005), whereas in the subcortical white matter, 17beta-hydroxysteroid dehydrogenase activity is significantly higher than in the cerebral neocortex (p < 0.0005). No sex differences were observed. In conclusion, the high levels of CYP7B1 mRNA in brain tissue as well as in a variety of other tissues in combination with the ubiquitous presence of 7alpha-hydroxylase activity in the human temporal lobe led us to assume a neuroprotective function of the enzyme such as regulation of the immune response or counteracting the deleterious effects of neurotoxic glucocorticoids, rather than a distinct brain specific function such as neurostimulation or neuromodulation. 相似文献
17.
18.
以Trizol法分别提取BNF诱导和对照处理草鱼的肝组织总RNA并合成cDNA第一链,以此为模板利用1对ACT特异性引物和(8条)6对CYP1A简并引物进行扩增。结果显示,引物对F0-R0在对照和诱导草鱼中均扩增得到预期ACTcDNA片段,而引物对F4-R4在诱导草鱼中获得预期CYP1A cDNA产物。这两个cDNA片段分别进行克隆、测序和比对,BLAST结果表明草鱼ACTcDNA片段(800 bp)与GenBank中ACT基因(登录号M25013)同源性为99.1%,推导氨基酸序列同源性为99.2%;草鱼CYP1A cDNA片段(439 bp)与鲤鱼同源性最高,为92.5%,推导氨基酸同源性为96.6%。上述序列提交GenBank,获得登录号分别为DQ211096和DQ211095。通过Mega 3.1软件的Neighbor-joining程序对CYP基因的部分cDNA序列和氨基酸序列进行比对分析并绘制进化树,根据CYP1A部分蛋白的系统发育关系,在进化上可以将参与比对的真骨鱼划分为4个主要的分支。 相似文献
19.
Katarzyna Skupinska Irena Misiewicz‐Krzeminska Rafal Stypulkowski Katarzyna Lubelska Teresa Kasprzycka‐Guttman 《Journal of biochemical and molecular toxicology》2009,23(1):18-28
CYP1A1 and CYP1A2 enzymes metabolize polycyclic aromatic hydrocarbons (PAHs) to the reactive oxyderivatives. PAHs can induce the activity of both enzymes, which increases its conversion and enhances risk of carcinogenesis. Thus, the inhibition of CYP enzymes is recognized as a cancer chemoprevention strategy. A well‐known group of chemopreventive agents is isothiocyanates, which occur naturally in Brassica vegetables. In this paper, a naturally occurring sulforaphane and its two synthetic analogues isothiocyanate‐2‐oxohexyl and alyssin were investigated. The aim of the study was to determine whether the differences in the isothiocyanate structure change its ability to inhibit CYP1A1 and CYP1A2 activity induced by benzo[a]pyrene in HepG2 and Mcf7 cells. Also a mechanistic study was performed including isothiocyanates' influence on CYP1A1 and CYP1A2 catalytic activity, enzymatic protein level, and AhR translocation. It was shown that both enzymes were significantly induced by benzo[a]pyrene, and isothiocyanates were capable of decreasing the induced activity. The inhibitory properties depend on the types of isothiocyanate and enzyme. In general, CYP1A2 was altered in the more meaningful way than CYP1A1 by isothiocyanates. Sulforaphane exhibited weak inhibitory properties, whereas both analogues were capable of inhibiting BaP‐induced activity with the similar efficacy. The mechanistic study revealed that analogues decreased the CYP1A2 activity via the protein‐level reduction and CYP1A1 directly. The results indicate that isothiocyanates can be considered as potent chemopreventive substances and the change in the sulforaphane structure increases its chemopreventive potency. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:18–28, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20259 相似文献
20.
目的巴马香猪是我国具有特色和优势的实验用小型猪资源品系,用于药物评价具有广阔前景。方法 以β-actin作校正,利用TaqMan定量技术对巴马香猪肝、肾、肾上腺、小肠、皮肤、脑、肺、睾丸、前列腺、子宫和卵巢等组织中CYP1A1、2A19和2E1 mRNA的表达水平进行检测,检测结果与报道的人体对应酶CYP1A2、2A6、2E1进行比较。结果巴马香猪CYP1A1、2A19、2E1 mRNA均以肝脏中最高,肝外组织明显较低,并且巴马香猪肝脏CYP1A1、2A19、2E1 mRNA均低于报道的人肝对应酶。结论巴马香猪CYP1A1、2A19、2E1与人体对应酶CYP1A2、2A6、2E1的mRNA组织表达存在一定差异,提示在其作为相应CYP亚型代谢的药物评价时应考虑这种种属差异对实验结果推广到人的影响。 相似文献