首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Virus clearance by depth filtration has not been well‐understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter‐ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ~2.1–3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:431–437, 2015  相似文献   

3.
As biomanufacturers consider the transition from batch to continuous processing, it will be necessary to re-examine the design and operating conditions for many downstream processes. For example, the integration of virus removal filtration in continuous biomanufacturing will likely require operation at low and constant filtrate flux instead of the high (constant) transmembrane pressures (TMPs) currently employed in traditional batch processing. The objective of this study was to examine the effect of low operating filtrate flux (5–100 L/m2/h) on protein fouling during normal flow filtration of human serum Immunoglobulin G (hIgG) through the Viresolve® Pro membrane, including a direct comparison of the fouling behavior during constant-flux and constant-pressure operation. The filter capacity, defined as the volumetric throughput of hIgG solution at which the TMP increased to 30 psi, showed a distinct minimum at intermediate filtrate flux (around 20–30 L/m2/h). The fouling data were well-described using a previously-developed mechanistic model based on sequential pore blockage and cake filtration, suitably modified for operation at constant flux. Simple analytical expressions for the pressure profiles were developed in the limits of very low and high filtrate flux, enabling rapid estimation of the filter performance and capacity. The model calculations highlight the importance of both the pressure-dependent rate of pore blockage and the compressibility of the protein cake to the fouling behavior. These results provide important insights into the overall impact of constant-flux operation on the protein fouling behavior and filter capacity during virus removal filtration using the Viresolve® Pro membrane.  相似文献   

4.
Virus filters are widely used in bioprocessing to reduce the risk of virus contamination in therapeutics. The small pores required to retain viruses are sensitive to plugging by trace contaminants and frequently require inline adsorptive prefiltration. Virus spiking studies are required to demonstrate virus removal capabilities of the virus filter using scale down filters. If prefiltration removes viruses and interferes with the measurement of virus filter LRV, the standard approach is to batch prefilter the protein solution, spike with virus, and then virus filter. For a number of proteins, batch prefiltration leads to increased plugging and significantly lower throughputs than inline prefiltration. A novel inline spiking method was developed to overcome this problem. This method allows the use of inline prefiltration with direct measurement of virus filter removal capabilities. The equipment and its operation are described. The method was tested with three different protein feeds, two different parvovirus filters, two virus injection rates; a salt spike, a bacteriophage spike, and two mammalian virus spikes: MMV and xMuLV. The novel inline method can reliably measure LRV at throughputs representative of the manufacturing process. It is recommended for applications where prefiltration is needed to improve throughput, prefiltration significantly reduces virus titer, and virus filter throughput is significantly reduced using batch vs. inline prefiltration. It can even help for the case where the virus preparation causes premature plugging.  相似文献   

5.
Currently, marketed influenza vaccines are only efficient against homologous viruses, thus requiring a seasonal update based on circulating subtypes. This constant reformulation adds several challenges to manufacturing, particularly in purification due to the variation of the physicochemical properties of the vaccine product. A universal platform approach capable of handling such variation is therefore of utmost importance. In this work, a filtration‐based approach is explored to purify influenza virus‐like particles. Switching from adsorptive separation to size‐based purification allows overcoming the differences in retention observed for different influenza strains. The proposed process employs a cascade of ultrafiltration and diafiltration steps, followed by a sterile filtration step. Different process parameters are assessed in terms of product recovery and impurities’ removal. Membrane chemistry, pore size, operation modes, critical flux, transmembrane pressure, and permeate control strategies are evaluated. After membrane selection and parameter optimization, concentration factors and diafiltration volumes are also defined. By optimizing the filtration mode of operation, it is possible to achieve product recoveries of approximately 80%. Overall, the process time is decreased by 30%, its scalability is improved, and the costs are reduced due to the removal of chromatography and associated buffer consumptions, cleaning, and its validation steps.  相似文献   

6.
Cell-based manufacturing processes have occasionally been exposed to adventitious viruses, leading to manufacturing interruptions and unstable supply situations. The rapid progress of advanced therapy medicinal products needs innovative approaches to avoid any unwelcome reminder of the universal presence of viruses. Here, we investigated upstream virus filtration as a clearance step for any product too complex for downstream interventions. Culture media virus filtration was investigated with respect to virus clearance capacities under extreme conditions such as high process feed loading (up to ~19,000 L/m²), long duration (up to 34 days), and multiple process interruptions (up to 21 h). The small nonenveloped Minute virus of mice was used as relevant target virus, and as worse-case challenge for the investigated virus filters with a stipulated pore-size of about 20 nm. Certain filters—especially of the newer second generation—were capable of effective virus clearance despite the harsh regimen they were subjected to. The biochemical parameters for un-spiked control runs showed the filters to have no measurable impact on the composition of the culture media. Based on these findings, this technology seems to be quite feasible for large volume premanufacturing process culture media preparations.  相似文献   

7.
8.
A combined pore blockage and cake filtration model was applied to the virus filtration of an Fc-fusion protein using the three commercially available filters, F-1, F-2, and F-3 in a range of buffer conditions including sodium-phosphate and tris-acetate buffers with and without 200 mM NaCl at pH 7.5. The fouling behaviors of the three filters for the feed solutions spiked with minute virus of mice were described well by this combined model for all the solution conditions. This suggests that fouling of the virus filters is dominated by the pore blockage mechanism during the initial stage of the filtration and transformed to the cake filtration mechanism during the later stage of the filtration. Both flux and transmembrane resistance can be described well by this model. The pore blockage rate and the rate of increase of protein layer resistance over blocked pores are found to be affected by membrane properties as well as the solution conditions resulting from the modulation of interactions between virus, protein, and membrane by the solution conditions.  相似文献   

9.
In virus clearance study (VCS) design, the amount of virus loaded onto the virus filters (VF) must be carefully controlled. A large amount of virus is required to demonstrate sufficient virus removal capability; however, too high a viral load causes virus breakthrough and reduces log reduction values. We have seen marked variation in the virus removal performance for VFs even with identical VCS design. Understanding how identical virus infectivity, materials and operating conditions can yield such different results is key to optimizing VCS design. The present study developed a particle number-based method for VCS and investigated the effects on VF performance of discrepancies between apparent virus amount and total particle number of minute virus of mice. Co-spiking of empty and genome-containing particles resulted in a decrease in the virus removal performance proportional to the co-spike ratio. This suggests that empty particles are captured in the same way as genome-containing particles, competing for retention capacity. In addition, between virus titration methods with about 2.0 Log10 difference in particle-to-infectivity ratios, there was a 20-fold decrease in virus retention capacity limiting the throughput that maintains the required LRV (e.g., 4.0), calculated using infectivity titers. These findings suggest that ignoring virus particle number in VCS design can cause virus overloading and accelerate filter breakthrough. This article asserts the importance of focusing on virus particle number and discusses optimization of VCS design that is unaffected by virological characteristics of evaluation systems and adequately reflect the VF retention capacity.  相似文献   

10.
Virus removal by filter membranes is regarded as a robust and efficient unit operation, which is frequently applied in the downstream processing of biopharmaceuticals. The retention of viruses by virus filtration membranes is predominantly based on size exclusion. However, recent results using model membranes and bacteriophage PP7 point to the fact that virus retention can also significantly be influenced by adsorptive interactions between virus, product molecules, and membranes. Furthermore, the impact of flow rate and flow interruptions on virus retention have been studied and responsible mechanisms discussed. The aim of this investigation was to gain a holistic understanding of the underlying mechanisms for virus retention in size exclusion membranes as a function of membrane structure and membrane surface properties, as well as flow and solution conditions. The results of this study contribute to the differentiation between size exclusion and adsorptive effects during virus filtration and broaden the current understanding of mechanisms related to virus breakthroughs after temporary flow interruptions. Within the frame of a Design of Experiments approach it was found that the level of retention of virus filtration membranes was mostly influenced by the membrane structure during typical process-related flow conditions. The retention performance after a flow interruption was also significantly influenced by membrane surface properties and solution conditions. While size exclusion was confirmed as main retention mechanism, the analysis of all results suggests that especially after a flow interruption virus retention can be influenced by adsorptive effects between the virus and the membrane surface. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2747, 2019.  相似文献   

11.
Several recent studies have reported a decline in virus retention during virus challenge filtration experiments, although the mechanism(s) governing this phenomenon for different filters remains uncertain. Experiments were performed to evaluate the retention of PP7 and PR772 bacteriophage through Ultipor VF Grade DV20 virus filters during constant pressure filtration. While the larger PR772 phage was fully retained under all conditions, a 2‐log decline in retention of the small PP7 phage was observed at high throughputs, even under conditions where there was no decline in filtrate flux. In addition, prefouling the membrane with an immunoglobulin G solution had no effect on phage retention. An internal polarization model was developed to describe the decline in phage retention arising from the accumulation of phage in the upper (reservoir) layer within the filter which increases the challenge to the lower (rejection) layer. Independent support for this internal polarization phenomenon was provided by confocal microscopy of fluorescently labeled phage within the membrane. The model was in good agreement with phage retention data over a wide range of phage titers, confirming that virus retention is throughput dependent and supporting current recommendations for virus retention validation studies. These results provide important insights into the factors governing virus retention by membrane filters and their dependence on the underlying structure of the virus filter membrane. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:856–863, 2014  相似文献   

12.
Virus filtration is a robust size-based technique that can provide the high level of viral clearance required for the production of mammalian-derived biotherapeutics such as monoclonal antibodies. Several studies have shown that the retention characteristics of some, but not all, virus filters can be significantly affected by membrane fouling, but there have been no direct measurements of how protein fouling might alter the location of virus capture within these membranes. The objective of this study was to directly examine the effect of protein fouling by human immunoglobulin G (IgG) on virus capture within the Viresolve® Pro and Viresolve® NFP membranes by scanning electron microscopy using different size gold nanoparticles. IgG fouling shifted the capture location of 20 nm gold nanoparticles further upstream within the Viresolve® Pro filter due to the constriction and/or blockage of the pores in the virus retentive region of the filter. In contrast, IgG fouling had no measurable effect on the capture of 20 nm nanoparticles in the Viresolve® NFP membrane, and IgG fouling had no effect on the capture of larger 40 and 100 nm nanoparticles in either membrane. These results provide important insights into how protein fouling alters the virus retention characteristics of different virus filters.  相似文献   

13.
Regarding biological products, increasing awareness of potential side effects have placed great importance not only at protein purity regarding other proteins but on the removal of biologicals such as DNA and especially virus the importance of which may not be known. Monoclonal antibodies (Mab) have come to be an important class of molecules obtained from hybridoma cells, i.e., nonrecombinant cells in culture. It has been noted during the last years, that with rare exceptions hybridoma cell lines contain retrovirus like particles. The infectious nature of the EM-visible particles has been tested for, however, in most cases not been substantiated. In order to bring these valuable biological reagents, Mab's, to good use in man for imaging or therapy, the remaining concern about a potential retroviral infection has to be reduced to an acceptable minimum. We describe experimental approaches for the validation of chromatographic and ultrafiltration steps used in the production of monoclonal antibodies to remove and inactivate murine retrovirus. Present day biotechnological manufacturing processes have been devised incorporating a number of strategic preventive measures that have found wide spread acceptance. They permit to answer the question: how can a potentially harmful infection by an unknown virus be excluded. Knowledge of the efficacy of purification steps to clear infectious model virus is fundamental to devise biotechnological manufacturing processes yielding a purified antibody for use in man.  相似文献   

14.
There is growing interest in the development of new vaccines based on live‐attenuated viruses (LAVs) and virus‐like particles. The large size of these vaccines, typically 100–400 nm, significantly complicates the use of sterile filtration. The objectives of this study are to examine the performance of several commercial sterile filters for filtration of a cytomegalovirus vaccine candidate (referred to as the LAV) and to develop and evaluate the use of a model nanoparticle suspension to perform a more quantitative assessment. Data obtained with a mixture of 200‐ and 300‐nm fluorescent particles provided yield and pressure profiles that captured the behavior of the viral vaccine. This included the excellent performance of the Sartorius Sartobran P filter, which provided greater than 80% yield of both the vaccine and model particles even though the average particle size was more than 250 nm. The particle yield for the Sartobran P was independent of filtrate flux above 200 L/m2/h, but increased with increasing particle concentration, varying from less than 10% at concentrations around 107 particles/ml to more than 80% at concentrations above 1010 particles/ml due to saturation of particle capture/binding sites within the filter. These results provide important insights into the factors controlling transmission and fouling during sterile filtration of large vaccine products.  相似文献   

15.
Virus filtration process is used to ensure viral safety in the biopharmaceutical downstream processes with high virus removal capacity (i.e., >4 log10). However, it is still constrained by protein fouling, which results in reduced filtration capacity and possible virus breakthrough. This study investigated the effects of protein fouling on filtrate flux and virus breakthrough using commercial membranes that had different symmetricity, nominal pore size, and pore size gradients. Flux decay tendency due to protein fouling was influenced by hydrodynamic drag force and protein concentration. As the results of prediction with the classical fouling model, standard blocking was suitable for most virus filters. Undesired virus breakthrough was observed in the membranes having relatively a large pore diameter of the retentive region. The study found that elevated levels of protein solution reduced virus removal performance. However, the impact of prefouled membranes was minimal. These findings shed light on the factors that influence protein fouling during the virus filtration process of biopharmaceutical production.  相似文献   

16.
Virus filtration remains a critical step in the downstream process for the production of monoclonal antibodies and other mammalian cell-derived biotherapeutics. Recent studies have shown large differences in virus capture behavior of different virus filters, although the origin of these differences is still unclear. The objective of this study was to use confocal and scanning electron microscopy to directly evaluate the capture of virus-size nanoparticles in Planova 20N and BioEX hollow-fiber virus filters. Confocal images of fluorescent nanoparticles were quantified using ImageJ image processing software based on the measured fluorescence intensity of the labeled nanoparticles. Nanoparticle capture by the Planova BioEX was independent of transmembrane pressure from 10 to 45 psi. In contrast, the Planova 20N showed significant differences in nanoparticle capture profile at low pressure, consistent with literature data showing virus breakthrough under these conditions. Images obtained after a process interruption show significant migration of previously captured nanoparticles in the Planova 20N filters but not in the BioEX. These results provide important insights into the nature of virus capture in different virus filters and its dependence on the underlying structure of the virus filtration membranes.  相似文献   

17.
Once highly selective protein A affinity is chosen for robust mAb downstream processing, the major role of polishing steps is to remove product related impurities, trace amounts of host cell proteins, DNA/RNA, and potential viral contaminants. Disposable systems can act as powerful options either to replace or in addition to polishing column chromatography to ensure product purity and excellent viral clearance power for patients' safety. In this presentation, the implementation of three disposable systems such as depth filtration, membrane chromatography, and nanometer filtration technology in a commercial process are introduced. The data set of viral clearance with these systems is presented. Application advantages and disadvantages including cost analysis are further discussed.  相似文献   

18.
Pre‐filtration using ion exchange membrane adsorbers can improve parvovirus filter throughput of monoclonal antibodies (mAbs). The membranes work by binding trace foulants, and although some antibody product also binds, yields ≥99% are easily achieved by overloading. Results show that foulant adsorption is dependent on pH and conductivity, but independent of scale and adsorber brand. The ability to use ion exchange membranes as pre‐filters is significant because it provides a clean, well defined, chemically stable option for enhancing throughput. Additionally, ion exchange membranes facilitate characterization of parvovirus filter foulants. Examination of adsorber elution samples using sedimentation velocity analysis and SEC‐MALS/QELS revealed the presence of high molecular weight species ranging from 8 to 13 nm in hydrodynamic radius, which are similar in size to parvoviruses and thus would be expected to plug the pores of a parvovirus filter. A study of two identical membranes in‐series supports the hypothesis that the foulants are soluble, trace level aggregates in the feed. This study's significance lies in a previously undiscovered application of membrane chromatography, leading to a more cost effective and robust approach to parvovirus filtration for the production of monoclonal antibodies. Biotechnol. Bioeng. 2010;106: 627–637. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
Parvovirus retentive filters that assure removal of viruses and virus‐like particles during the production of therapeutic proteins significantly contribute to total manufacturing costs. Operational approaches that can increase throughput and reduce filtration area would result in a significant cost savings. A combination of methods was used to achieve high throughputs of an antibody or therapeutic protein solution through three parvovirus retentive filters. These methods included evaluation of diatomaceous earth or size‐based prefilters, the addition of additives, and the optimization of protein concentration, temperature, buffer composition, and solution pH. An optimum temperature of 35°C was found for maximizing throughput through the Virosart CPV and Viresolve Pro filters. Mass‐throughput values of 7.3, 26.4, and 76.2 kg/m2 were achieved through the Asahi Planova 20N, Virosart CPV, and Viresolve Pro filters, respectively, in 4 h of processing. Mass‐throughput values of 73, 137, and 192 kg/m2 were achieved through a Millipore Viresolve Pro filter in 4.0, 8.8, and 22.1 h of processing, respectively, during a single experiment. However, large‐scale parvovirus filtration operations are typically controlled to limit volumetric throughput to below the level achieved during small‐scale virus spiking experiments. The virus spike may cause significant filter plugging, limiting throughput. Therefore newer parvovirus filter spiking strategies should be adopted that may lead to more representative viral clearance data and higher utilization of large‐scale filter capacity. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

20.
Adeno-associated virus (AAV) vector can efficiently transduce therapeutic genes in various tissue types with less side effects; however, owing to complex multistep processes during manufacture, there have been surges in the pricing of recently approved AAV vector-based gene therapy products. This study aimed to develop a simple and efficient method for high-quality purification of AAV vector via tangential flow filtration (TFF), which is commonly used for concentration and diafiltration of solutions during AAV vector purification. We established a novel purification method using TFF and surfactants. Treatment with two classes of surfactants (anionic and zwitterionic) successfully inhibited the aggregation of residual proteins separated from the AAV vector in the crude product by TFF, obtaining a clearance of 99.5% residual proteins. Infectivity of the AAV vector purified using the new method was confirmed both in vitro and in vivo, and no remarkable inflammation or tissue damage was observed in mouse skeletal muscle after local administration. Overall, our proposed method could be used to establish a platform for the purification of AAV vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号