首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the thermodynamic principles that control the binding of drug molecules to their protein targets are well understood, the detailed process of how a ligand reaches a protein binding site has been an intriguing question over decades. The short time interval between the encounter between a ligand and its receptor to the formation of the stable complex has prevented experimental observations. Bovine β‐lactoglobulin (βlg) is a lipocalin member that carries fatty acids (FAs) and other lipids in the cellular environment. Βlg accommodates a FA molecule in its highly hydrophobic cavity and exhibits the capability of recognizing a wide variety of hydrophobic ligands. To elucidate the ligand entry process on βlg, we report molecular dynamics simulations of the encounter between palmitate (PA) or laurate (LA) and βlg. Our results show that residues localized in loops at the cavity entrance play an important role in the ligand penetration process. Analysis of the short‐term interaction energies show that the forces operating on the systems lead to average conformations very close to the crystallographic holo‐forms. Whereas the binding free energy analysis using the molecular mechanics Generalized Born surface area method shows that these conformations were thermodynamically favorable. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 744–757, 2014.  相似文献   

2.
Through experimental and theoretical approaches, it has been shown that bovine β-lactoglobulin (βlg) uses its hydrophobic cavity or calyx as the primary binding site for hydrophobic molecules, whereas the existence of a second ligand binding site at the dimeric interface has only been structurally identified for vitamin D3 (VD3). This binding exists even in the thermally denatured state, suggesting the prevalence of this secondary site. Although crystallographic experiments have suggested that VD3 can bind to both monomeric and dimeric states without significant structural differences, theoretical and experimental reports have proposed some structural requirements. Thus, in this study, based on known experimental data, the dynamic interaction of VD3 with the monomeric or dimeric forms of βlg was investigated through a protocol combining blind docking and 2 microsecond molecular dynamics simulations coupled with binding free energy and per-residue binding free energy decomposition analyses using the Molecular Mechanics Generalized Born Surface Area approach. Binding free energy calculations allowed us to estimate the energetic differences of coupling VD3 at the calyx and the dimeric interface for the monomeric or dimeric state, revealing that the dimeric structure is required to form a stable complex with VD3 at the dimeric interface. This also has an important impact on the dimerization process, whereas although the monomeric state also forms a stable complex with VD3 at the dimeric interface, the incorporation of the entropy component contributed to producing a marginally favorable binding free energy. Finally, the per-residue decomposition analysis provided energetic information about the most relevant residues in stabilizing the different systems.  相似文献   

3.
Binding‐site water molecules play a crucial role in protein‐ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding‐site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding‐site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding‐site water molecules by post‐processing molecular dynamics trajectories obtained from ligand‐free protein structure simulation in explicit water. Next, we implemented a distance‐dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding‐site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein‐ligand‐water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot‐spot binding‐site residues and structure‐based lead optimization. Proteins 2014; 82:1765–1776. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
Ovine β‐lactoglobulin has been isolated from whey fraction of sheep milk and crystallized. The high‐resolution structures of two crystal forms (triclinic and trigonal) obtained at pH 7.0 have been determined revealing that ovine protein, similarly to its bovine analog, is dimeric. Access to the binding site located in the eight‐stranded antiparallel β‐barrel in both structures is blocked by the EF loop that has been found in closed conformation. Similarly to bovine lactoglobulin (BLG), conformation of the EF loop is stabilized by hydrogen bond between Glu89 and Ser116 indicating that Tanford transition might occur with the same mechanism. The substitution at six positions in relation to the most abundant isoform B of BLG also affects the distribution of electrostatic potentials and the total charge. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 886–894, 2014.  相似文献   

5.
Bovine and camel chymosins are aspartic proteases that are used in dairy food manufacturing. Both enzymes catalyze proteolysis of a milk protein, κ‐casein, which helps to initiate milk coagulation. Surprisingly, camel chymosin shows a 70% higher clotting activity than bovine chymosin for bovine milk, while exhibiting only 20% of the unspecific proteolytic activity. By contrast, bovine chymosin is a poor coagulant for camel milk. Although both enzymes are marketed commercially, the disparity in their catalytic activity is not yet well understood at a molecular level, due in part to a lack of atomistic resolution data about the chymosin—κ‐casein complexes. Here, we report computational alanine scanning calculations of all four chymosin—κ‐casein complexes, allowing us to elucidate the influence that individual residues have on binding thermodynamics. Of the 12 sequence differences in the binding sites of bovine and camel chymosin, eight are shown to be particularly important for understanding differences in the binding thermodynamics (Asp112Glu, Lys221Val, Gln242Arg, Gln278Lys. Glu290Asp, His292Asn, Gln294Glu, and Lys295Leu. Residue in bovine chymosin written first). The relative binding free energies of single‐point mutants of chymosin are calculated using the molecular mechanics three dimensional reference interaction site model (MM‐3DRISM). Visualization of the solvent density functions calculated by 3DRISM reveals the difference in solvation of the binding sites of chymosin mutants.  相似文献   

6.
The Schiff base 4‐hydroxy‐benzoic acid (4‐diethylamino‐2‐hydroxy‐benzylidene) hydrazide (SL) was synthesized and characterized. Its antioxidant activity was evaluated using 1,1‐diphenyl‐2‐picrylhydrazyl (DPPH) free radical scavenging action. Being a potent antioxidant its binding ability to the transport protein bovine serum albumin (BSA) was studied using fluorescence quenching and circular dichroism (CD) studies. The binding distance has been calculated by fluorescence resonance energy transfer (FRET) to be 1.85 Å and the Stern–Volmer quenching constant has been calculated to be (3.23 ± 0.45) × 105 M–1. Quantum chemical analysis was carried out for the Schiff base using DFT with B3LYP and 6–311G** and related to the experimentally obtained results. For a deeper understanding of the mechanism of the interaction, the experimental data were complemented by protein–Schiff base docking calculations using Argus Lab. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction of saturated fatty acids of different length (C8:0 to C18:0) with β‐lactoglobulin (βLG) was investigated by molecular dynamics simulation and docking approaches. The results show that the presence of such ligands in the hydrophobic central cavity of βLG, known as the protein calyx, determines an enhancement of atomic fluctuations compared with the unliganded form, especially for loops at the entrance of the binding site. Concerted motions are evidenced for protein regions that could favor the binding of ligands. The mechanism of anchoring of fatty acids of different length is similar for the carboxylate head‐group, through electrostatic interactions with the side chains of Lys60/Lys69. The key protein residues to secure the hydrocarbon chain are Phe105/Met107, which adapt their conformation upon ligand binding. In particular, Phe105 provides an additional hydrophobic clamp only for the tail of the two fatty acids with the longest chains, palmitic, and stearic acid, which are known to bind βLG with a high affinity. The search of additional external binding sites for fatty acids, distinct from the calyx, was also carried out for palmitic acid. Two external sites with a lower affinity were identified as secondary sites, one consisting in a hydrophobic cavity allowing two distinct binding modes for the fatty acid, and the other corresponding to a surface crevice close to the protein α‐helix. The overall results provide a comprehensive picture of the dynamical behavior of βLG in complex with fatty acids, and elucidate the structural basis of the binding of these physiological ligands. Proteins 2014; 82:2609–2619. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
A newly synthesized 1, 4‐bis ((4‐((4‐heptylpiperazin‐1‐yl) methyl)‐1H‐1, 2, 3‐triazol‐1‐yl) methyl) benzene from the family of piperazine derivative has good anticancer activity, antibacterial and low toxic nature; its binding characteristics are therefore of huge interest for understanding pharmacokinetic mechanism of the drug. The binding of piperazine derivative to bovine serum albumin (BSA) was investigated using fluorescence spectroscopy. The molecular distance r between the donor (BSA) and acceptor (piperazine derivative) was estimated according to Forster's theory of nonradiative energy transfer. The physicochemical properties of piperazine derivative, which induced structural changes in BSA, have been studied by circular dichroism and those chemical environmental changes were probed using Raman spectroscopic analysis. Further, the binding dynamics was expounded by synchronous fluorescence spectroscopy and molecular modeling studies explored the hydrophobic interaction and hydrogen bonding results, which stabilize the interaction.  相似文献   

9.
Auxin‐binding protein 1 (ABP1) is suggested to be an auxin receptor which plays an important role in several processes in green plants. Maize ABP1 was simulated with the natural auxin indole‐3‐acetic acid (IAA) and the synthetic analog naphthalen‐1‐acetic acid (NAA), to elucidate the role of the KDEL sequence and the helix at the C‐terminus. The KDEL sequence weakens the intermolecular interactions between the monomers but stabilizes the C‐terminal helix. Conformational changes at the C‐terminus occur within the KDEL sequence and are influenced by the binding of the simulated ligands. This observation helps to explain experimental findings on ABP1 interactions with antibodies that are modulated by the presence of auxin, and supports the hypothesis that ABP1 acts as an auxin receptor. Stable hydrogen bonds between the monomers are formed between Glu40 and Glu62, Arg10 and Thr97, Lys39, and Glu62 in all simulations. The amino acids Ile22, Leu25, Trp44, Pro55, Ile130, and Phe149 are located in the binding pocket and are involved in hydrophobic interactions with the ring system of the ligand. Trp151 is stably involved in a face to end interaction with the ligand. The calculated free energy of binding using the linear interaction energy approach showed a higher binding affinity for NAA as compared to IAA. Our simulations confirm the asymmetric behavior of the two monomers, the stronger interaction of NAA than IAA and offers insight into the possible mechanism of ABP1 as an auxin receptor. Proteins 2014; 82:2744–2755. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
The features of brucine (BC) binding to two blood proteins, bovine hemoglobin (BHb), and bovine serum albumin (BSA), were investigated via fluorescence, circular dichroism and UV/Vis absorption spectroscopy. The results revealed that BC caused the fluorescence quenching of blood proteins by the formation of BC–protein complex. The corresponding thermodynamic parameters were measured at different temperatures. The process of binding BC molecule on protein was a spontaneous molecular interaction procedure in which entropy increased and Gibbs free energy decreased. Hydrophobic and electrostatic interactions play a major role in stabilizing the complex. The molecular docking has been employed to explore the binding site of the BC in BHb and BSA on the Autodock 4.2. The distances r between BC and protein were calculated to be 4.93 and 5.08 nm for BHb, and BSA, respectively. The effect of BC on the conformation of blood proteins was analyzed using CD, synchronous fluorescence and three-dimensional fluorescence spectra.  相似文献   

11.
Yunhui Peng  Emil Alexov 《Proteins》2017,85(2):282-295
Protein–nucleic acid interactions play a crucial role in many biological processes. This work investigates the changes of pKa values and protonation states of ionizable groups (including nucleic acid bases) that may occur at protein–nucleic acid binding. Taking advantage of the recently developed pKa calculation tool DelphiPka, we utilize the large protein–nucleic acid interaction database (NPIDB database) to model pKa shifts caused by binding. It has been found that the protein's interfacial basic residues experience favorable electrostatic interactions while the protein acidic residues undergo proton uptake to reduce the energy cost upon the binding. This is in contrast with observations made for protein–protein complexes. In terms of DNA/RNA, both base groups and phosphate groups of nucleotides are found to participate in binding. Some DNA/RNA bases undergo pKa shifts at complex formation, with the binding process tending to suppress charged states of nucleic acid bases. In addition, a weak correlation is found between the pH‐optimum of protein–DNA/RNA binding free energy and the pH‐optimum of protein folding free energy. Overall, the pH‐dependence of protein–nucleic acid binding is not predicted to be as significant as that of protein–protein association. Proteins 2017; 85:282–295. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Dengue infection is the most common arthropod‐borne disease caused by dengue viruses, predominantly affecting millions of human beings annually. To find out promising chemical entities for therapeutic application in Dengue, in the current research, a multi‐step virtual screening effort was conceived to screen out the entire “screening library” of the Asinex database. Initially, through “Lipinski rule of five” filtration criterion almost 0.6 million compounds were collected and docked with NS3‐NS2B protein. Thereby, the chemical space was reduced to about 3500 compounds through the analysis of binding affinity obtained from molecular docking study in AutoDock Vina. Further, the “Virtual Screening Workflow” (VSW) utility of Schrödinger suite was used, which follows a stepwise multiple docking programs such as ‐ high‐throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP) docking, and in postprocessing analysis the MM‐GBSA based free binding energy calculation. Finally, five potent molecules were proposed as potential inhibitors for the dengue NS3‐NS2B protein based on the investigation of molecular interactions map and protein‐ligand fingerprint analyses. Different pharmacokinetics and drug‐likeness parameters were also checked, which favour the potentiality of selected molecules for being drug‐like candidates. The molecular dynamics (MD) simulation analyses of protein‐ligand complexes were explained that NS3‐NS2B bound with proposed molecules quite stable in dynamic states as observed from the root means square deviation (RMSD) and root means square fluctuation (RMSF) parameters. The binding free energy was calculated using MM‐GBSA method from the MD simulation trajectories revealed that all proposed molecules possess such a strong binding affinity towards the dengue NS3‐NS2B protein. Therefore, proposed molecules may be potential chemical components for effective inhibition of dengue NS3‐NS2B protein subjected to experimental validation.  相似文献   

13.
Anthocyanin is one of the flavonoid phytopigments with specific health benefits. The interaction between delphinidin‐3‐O‐glucoside (D3G) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three‐dimensional fluorescence spectroscopy, ultraviolet‐visible absorption spectroscopy, circular dichroism spectroscopy and molecular modeling. D3G effectively quenched the intrinsic fluorescence of BSA via static quenching. The number of binding sites and binding constant Ka were determined, and the hydrogen bonds and van der Waals forces played major roles in stabilizing the D3G–BSA complex. The distance r between donor and acceptor was obtained as 2.81 nm according to Förster's theory. In addition, the effects of pH and metal ions on the binding constants were discussed. The results studied by synchronous fluorescence, three‐dimensional fluorescence and circular dichroism experiments indicated that the secondary structures of the protein has been changed by the addition of D3G and the α‐helix content of BSA decreased (from 56.1% to 52.4%). Furthermore, the study of site marker competitive experiments and molecular modeling indicated that D3G could bind to site I of BSA, which was in the large hydrophobic cavity of subdomain IIA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
This study utilizes sensitive, modern isothermal titration calorimetric methods to characterize the microscopic thermodynamic parameters that drive the binding of basic drugs to α‐1‐acid glycoprotein (AGP) and thereby rationalize the thermodynamic data in relation to docking models and crystallographic structures of the drug–AGP complexes. The binding of basic compounds from the tricyclic antidepressant series, together with miaserine, chlorpromazine, disopyramide and cimetidine, all displayed an exothermically driven binding interaction with AGP. The impact of protonation/deprotonation events, ionic strength, temperature and the individual selectivity of the A and F1*S AGP variants on drug‐binding thermodynamics was characterized. A correlation plot of the thermodynamic parameters for all of the test compounds revealed that an enthalpy–entropy compensation is in effect. The exothermic binding energetics of the test compounds were driven by a combination of favorable (negative) enthalpic (?Hº) and favorable (positive) entropic (?Sº) contributions to the Gibbs free energy (?Gº). Collectively, the data imply that the free energies that drive drug binding to AGP and its relationship to drug serum residency evolve from the complex interplay of enthalpic and entropic forces from interactions with explicit combinations of hydrophobic and polar side‐chain sub‐domains within the multi‐lobed AGP ligand binding cavity.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Force field accuracy is still one of the “stalemates” in biomolecular modeling. Model systems with high quality experimental data are valuable instruments for the validation and improvement of effective potentials. With respect to protein–ligand binding, organic host–guest complexes have long served as models for both experimental and computational studies because of the abundance of binding affinity data available for such systems. Binding affinity data collected for cyclodextrin (CD) inclusion complexes, a popular model for molecular recognition, is potentially a more reliable resource for tuning energy parameters than hydration free energy measurements. Convergence of binding free energy calculations on CD host–guest systems can also be obtained rapidly, thus offering the opportunity to assess the robustness of these parameters. In this work, we demonstrate how implicit solvent parameters can be developed using binding affinity experimental data and the binding energy distribution analysis method (BEDAM) and validated using the Grid Inhomogeneous Solvation Theory analysis. These new solvation parameters were used to study protein–ligand binding in two drug targets against the HIV‐1 virus and improved the agreement between the calculated and the experimental binding affinities. This work illustrates how benchmark sets of high quality experimental binding affinity data and physics‐based binding free energy models can be used to evaluate and optimize force fields for protein–ligand systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Clostridium propionicum is the only organism known to ferment β‐alanine, a constituent of coenzyme A (CoA) and the phosphopantetheinyl prosthetic group of holo‐acyl carrier protein. The first step in the fermentation is a CoA‐transfer to β‐alanine. Subsequently, the resulting β‐alanyl‐CoA is deaminated by the enzyme β‐alanyl‐CoA:ammonia lyase (Acl) to reversibly form ammonia and acrylyl‐CoA. We have determined the crystal structure of Acl in its apo‐form at a resolution of 0.97 Å as well as in complex with CoA at a resolution of 1.59 Å. The structures reveal that the enyzme belongs to a superfamily of proteins exhibiting a so called “hot dog fold” which is characterized by a five‐stranded antiparallel β‐sheet with a long α‐helix packed against it. The functional unit of all “hot dog fold” proteins is a homodimer containing two equivalent substrate binding sites which are established by the dimer interface. In the case of Acl, three functional dimers combine to a homohexamer strongly resembling the homohexamer formed by YciA‐like acyl‐CoA thioesterases. Here, we propose an enzymatic mechanism based on the crystal structure of the Acl·CoA complex and molecular docking. Proteins 2014; 82:2041–2053. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
A functional proteomic technology using protein chip and molecular simulation was used to demonstrate a novel biomolecular interaction between P11, a peptide containing the Ser‐Asp‐Val (SDV) sequence and integrin αvβ3. P11 (HSDVHK) is a novel antagonistic peptide of integrin αvβ3 screened from hexapeptide library through protein chip system. An in silico docking study and competitive protein chip assay revealed that the SDV sequence of P11 is able to create a stable inhibitory complex onto the vitronectin‐binding site of integrin αvβ3. The Arg‐Gly‐Asp (RGD)‐binding site recognition by P11 was site specific because the P11 was inactive for the complex formation of a denatured form of integrin–vitronectin. P11 showed a strong antagonism against αvβ3‐GRGDSP interaction with an IC50 value of 25.72±3.34 nM, whereas the value of GRGDSP peptide was 1968.73±444.32 nM. The binding‐free energies calculated from the docking simulations for each P11 and RGD peptide were ?3.99 and ?3.10 kcal/mol, respectively. The free energy difference between P11 and RGD corresponds to approximately a 4.5‐fold lower Ki value for the P11 than the RGD peptide. The binding orientation of the docked P11 was similar to the crystal structure of the RGD in αvβ3. The analyzed docked poses suggest that a divalent metal–ion coordination was a common driving force for the formation of both SDV/αvβ3 and RGD/αvβ3 complexes. This is the first report on the specific recognition of the RGD‐binding site of αvβ3 by a non‐RGD containing peptide using a computer‐assisted proteomic approach.  相似文献   

18.
We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 104 M?1 and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (?G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol?1 K?1). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.  相似文献   

19.
Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1.  相似文献   

20.
β-Lactoglobulin (βlg) is the most abundant whey protein in the milks of ruminant animals. While bovine βlg has been subjected to a vast array of studies, little is known about the caprine ortholog. We present an ultra-high resolution crystal structure of caprine βlg complemented by analytical ultracentrifugation and small-angle X-ray scattering data. In both solution and crystalline states caprine βlg is dimeric (KD < 5 μM); however, our data suggest a flexible quaternary arrangement of subunits within the dimer. These structural findings will provide insight into relationships among structural, processing, nutritional and immunological characteristics that distinguish cow’s and goat’s milk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号