首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural studies of caspase-1 reveal that the dimeric thiol protease can exist in two states: in an on-state, when the active site is occupied, or in an off-state, when the active site is empty or when the enzyme is bound by a synthetic allosteric ligand at the dimer interface ∼ 15 Å from the active site. A network of 21 hydrogen bonds from nine side chains connecting the active and allosteric sites change partners when going between the on-state and the off-state. Alanine-scanning mutagenesis of these nine side chains shows that only two of them—Arg286 and Glu390, which form a salt bridge—have major effects, causing 100- to 200-fold reductions in catalytic efficiency (kcat/Km). Two neighbors, Ser332 and Ser339, have minor effects, causing 4- to 7-fold reductions. A more detailed mutational analysis reveals that the enzyme is especially sensitive to substitutions of the salt bridge: even a homologous R286K substitution causes a 150-fold reduction in kcat/Km. X-ray crystal structures of these variants suggest the importance of both the salt bridge interaction and the coordination of solvent water molecules near the allosteric binding pocket. Thus, only a small subset of side chains from the larger hydrogen bonding network is critical for activity. These form a contiguous set of interactions that run from one active site through the allosteric site at the dimer interface and onto the second active site. This subset constitutes a functional allosteric circuit or “hot wire” that promotes site-to-site coupling.  相似文献   

2.
IIAGlc, the glucose-specific phosphocarrier protein of the phosphoenolpyruvate:glycose phosphotransferase system, is an allosteric inhibitor of Escherichia coli glycerol kinase. A linked-functions initial-velocity enzyme kinetics approach is used to define the MgATP-IIAGlc heterotropic allosteric interaction. The interaction is measured by the allosteric coupling constants Q and W, which describe the mutual effect of the ligands on binding affinity and the effect of the allosteric ligand on Vmax, respectively. Allosteric interactions between these ligands display K-type activation and V-type inhibition. The allosteric coupling constant Q is about 3, showing cooperative coupling such that each ligand increases the affinity for binding of the other. The allosteric coupling constant W is about 0.1, showing that the allosteric inhibition is partial such that binding of IIAGlc at saturation does not reduce Vmax to zero. E. coli glycerol kinase is a member of the sugar kinase/heat shock protein 70/actin superfamily, and an element of the superfamily conserved ATPase catalytic core was identified as part of the IIAGlc inhibition network because it is required to transplant IIAGlc allosteric control into a non-allosteric glycerol kinase [A.C. Pawlyk, D.W. Pettigrew, Proc. Natl. Acad. Sci. USA 99 (2002) 11115-11120]. Two of the amino acids at this locus of E. coli glycerol kinase are replaced with those from the non-allosteric enzyme to enable determination of its contributions to MgATP-IIAGlc allosteric coupling. The substitutions reduce the affinity for IIAGlc by about 5-fold without changing significantly the allosteric coupling constants Q and W. The insensitivity of the allosteric coupling constants to the substitutions may indicate that the allosteric network is robust or the locus is not an element of that network. These possibilities may arise from differences of E. coli glycerol kinase relative to other superfamily members with respect to oligomeric structure and location of the allosteric site in a single domain far from the catalytic site.  相似文献   

3.
This letter describes the further exploration of two series of M1 allosteric agonists, TBPB and VU0357017, previously reported from our lab. Within the TPBP scaffold, either electronic or steric perturbations to the central piperidine ring led to a loss of selective M1 allosteric agonism and afforded pan-mAChR antagonism, which was demonstrated to be mediated via the orthosteric site. Additional SAR around a related M1 allosteric agonist family (VU0357017) identified similar, subtle ‘molecular switches’ that modulated modes of pharmacology from allosteric agonism to pan-mAChR orthosteric antagonism. Therefore, all of these ligands are best classified as bi-topic ligands that possess high affinity binding at an allosteric site to engender selective M1 activation, but all bind, at higher concentrations, to the orthosteric ACh site, leading to non-selective orthosteric site binding and mAChR antagonism.  相似文献   

4.
Allosteric regulation of protein function is recognized to be widespread throughout biology; however, knowledge of allosteric mechanisms, the molecular changes within a protein that couple one binding site to another, is limited. Although mutagenesis is often used to probe allosteric mechanisms, we consider herein what the outcome of a mutagenesis study truly reveals about an allosteric mechanism. Arguably, the best way to evaluate the effects of a mutation on allostery is to monitor the allosteric coupling constant (Qax), a ratio of the substrate binding constants in the absence versus presence of an allosteric effector. A range of substitutions at a given residue position in a protein can reveal when a particular substitution causes gain-of-function, which addresses a key challenge in interpreting mutation-dependent changes in the magnitude of Qax. Thus, whole-protein mutagenesis studies offer an acceptable means of identifying residues that contribute to an allosteric mechanism. With this focus on monitoring Qax, and keeping in mind the equilibrium nature of allostery, we consider alternative possibilities for what an allosteric mechanism might be. We conclude that different possible mechanisms (rotation-of-solid-domains, movement of secondary structure, side-chain repacking, changes in dynamics, etc.) will result in different findings in whole-protein mutagenesis studies.  相似文献   

5.
G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained.  相似文献   

6.
G-protein-coupled receptors (GPCRs) are membrane proteins that allosterically transduce the signal of ligand binding in the extracellular (EC) domain to couple to proteins in the intracellular (IC) domain. However, the complete pathway of allosteric communication from the EC to the IC domain, including the role of individual amino acids in the pathway is not known. Using the correlation in torsion angle movements calculated from microseconds-long molecular-dynamics simulations, we elucidated the allosteric pathways in three different conformational states of β2-adrenergic receptor (β2AR): 1), the inverse-agonist-bound inactive state; 2), the agonist-bound intermediate state; and (3), the agonist- and G-protein-bound fully active state. The inactive state is less dynamic compared with the intermediate and active states, showing dense clusters of allosteric pathways (allosteric pipelines) connecting the EC with the IC domain. The allosteric pipelines from the EC domain to the IC domain are weakened in the intermediate state, thus decoupling the EC domain from the IC domain and making the receptor more dynamic compared with the other states. Also, the orthosteric ligand-binding site becomes the initiator region for allosteric communication in the intermediate state. This finding agrees with the paradigm that the nature of the agonist governs the specific signaling state of the receptor. These results provide an understanding of the mechanism of allosteric communication in class A GPCRs. In addition, our analysis shows that mutations that affect the ligand efficacy, but not the binding affinity, are located in the allosteric pipelines. This clarifies the role of such mutations, which has hitherto been unexplained.  相似文献   

7.
A high throughput screening campaign was designed to identify allosteric inhibitors of Chk1 kinase by testing compounds at high concentration. Activity was then observed at Km for ATP and at near-physiological concentrations of ATP. This strategy led to the discovery of a non-ATP competitive thioquinazolinone series which was optimized for potency and stability. An X-ray crystal structure for the complex of our best inhibitor bound to Chk1 was solved, indicating that it binds to an allosteric site ~13 Å from the ATP binding site. Preliminary data is presented for several of these compounds.  相似文献   

8.
A series of 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines were prepared and evaluated as potential allosteric modulators at the A1 adenosine receptor. The structure–activity relationships of the 3- and 6-positions of a series of 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines were explored. Despite finding that 3- and 6-substituted 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines possess the ability to recognize an allosteric site on the agonist-occupied A1AR at relatively high concentrations, the structural modifications we have performed on this scaffold favor the expression of orthosteric antagonist properties over allosteric properties. This research has identified 2-amino-4,5,6,7-tetrahydrothieno[2,3-c]pyridines as novel class of orthosteric antagonist of the A1AR and highlighted the close relationship between structural elements governing allosteric modulation and orthosteric antagonism of agonist function at the A1AR.  相似文献   

9.
In stationary-phase cultures of either Escherichia coli W4597(K) or G34 in various nutrient conditions there is a 10-fold range of steady-state rates of glycogen synthesis with an essentially constant steady-state level of ATP, presumably reflecting an essentially constant energy charge. The steady-state level of fructose-1,6-diphosphate in these cultures varies from experiment to experiment as a function of the observed rate of glycogen synthesis. These data were fitted to the Hill equation using an assumed Hill coefficient of 2: a plot of [Fru-P2]2/rate of glycogen synthesis versus [Fru-P2]2 is linear with a correlation coefficient greater than 0.999, indicating a causal relationship between the concentration of Fru-P2 and the rate of glycogen synthesis. These data provide further evidence that allosteric effects observed in vitro function in vivo.  相似文献   

10.
Detection and characterization of a new beta-conglycinin from soybean seeds   总被引:3,自引:0,他引:3  
A new protein has been isolated from the reserve proteins of the seeds of soybean (Glycine max) which is particularly deficient in methionine and cysteine. The protein dissociated in sodium dodecyl sulfate into a single polypeptide, Mr 48,000. The amino acid composition, N-terminal leucine and mobility on gel electrophoresis of this polypeptide all were indistinguishable from the β-subunit of β-conglycinin. In its nondissociated form, the protein behaved as a trimer of Mr, 137,000 ± 4000. Its sedimentation coefficient at ionic strength 0.5 was 7.5 S and it possessed antigenic determinants in common with β-conglycinin. This protein therefore has the properties of a new isomer of β-conglycinin—a homogeneous trimer of β subunits.  相似文献   

11.
A series of 2-amino-4,5,6,7,8,9-hexahydrocycloocta[b]thiophenes were prepared and evaluated as potential allosteric modulators of the A1 adenosine receptor (AR). The structure-activity relationships of the 3-position were explored along with varying the size of the cycloalkyl ring. 2-Aminothiophenes with amide and hydrazide groups in the 3-position were completely inactive in an A1-AR-mediated ERK1/2 phosphorylation assay, yet most of the 3-benzoyl substituted compounds exhibited allosteric effects on responses mediated by the orthosteric agonist, R-PIA. Despite finding an increase in both agonistic and allosteric activities by going from a cyclopentyl ring to a cyclohexyl ring in the 3-benzoyl series, decreases were observed when further increasing the ring size. Varying the substituents on the phenyl ring of the 3-benzoyl group also affected the activity of these compounds.  相似文献   

12.
Cyclic nucleotides (cAMP and cGMP) regulate multiple intracellular processes and are thus of a great general interest for molecular and structural biologists. To study the allosteric mechanism of different cyclic nucleotide binding (CNB) domains, we compared cAMP-bound and cAMP-free structures (PKA, Epac, and two ionic channels) using a new bioinformatics method: local spatial pattern alignment. Our analysis highlights four major conserved structural motifs: 1) the phosphate binding cassette (PBC), which binds the cAMP ribose-phosphate, 2) the “hinge,” a flexible helix, which contacts the PBC, 3) the β2,3 loop, which provides precise positioning of an invariant arginine from the PBC, and 4) a conserved structural element consisting of an N-terminal helix, an eight residue loop and the A-helix (N3A-motif). The PBC and the hinge were included in the previously reported allosteric model, whereas the definition of the β2,3 loop and the N3A-motif as conserved elements is novel. The N3A-motif is found in all cis-regulated CNB domains, and we present a model for an allosteric mechanism in these domains. Catabolite gene activator protein (CAP) represents a trans-regulated CNB domain family: it does not contain the N3A-motif, and its long range allosteric interactions are substantially different from the cis-regulated CNB domains.  相似文献   

13.
Allosteric kinetics of pyruvate kinase of Saccharomyces carlsbergensis   总被引:3,自引:0,他引:3  
The allosteric model of Monod et al. (1965) has been used to analyse the steadystate kinetics of pyruvate kinase from Saccharomyces carlsbergensis. The dissociation constants for the substrate phosphoenolpyruvate, the inhibitor ATP as well as the activator fructose-1, 6-diphosphate from the R and T state were calculated using a series of computer programs. On the basis of a crucial relation (derived in the Appendix), which correlates the Hill coefficient and the half-saturating concentration of substrate saturation curves with the parameters of the model of Monod et al., it is possible to differentiate between exclusive and non-exclusive ligand binding. On the other hand, this relation makes it possible to fit the experimental data to an extended model assuming only partially concerted transitions in each enzyme molecule.The physical data of yeast pyruvate kinase point to a tetrameric structure, whereas the steady-state kinetics favour a trimeric one. This discrepancy in the number of protomers can be overcome by the use of an extended model, which permits the occurrence of hybrid states RtTn?t. The introduction of one symmetrical hybrid state R2T2 into the model explains the kinetic data of yeast pyruvate kinase on the basis of four, probably identical, protomers. The equilibrium constants between the states are given.In the Appendix the derivation of the equation describing the occurrence of hybrid states is reported.  相似文献   

14.
The Mg, Ca-ATPase from Escherichia coli is activated by KCl at low concentration and inhibited at high ion concentration. The optimum is at 30 mm KCl. The anion has a major effect, the monovalent cation a minor effect. The activation by Cl? shows positive cooperativity with a Hill coefficient nH= 2. The activation is accompanied by a decrease in Km, leaving V unchanged. Thus the activation is seen especially at low substrate [MgATP] concentration. Trypsin-treated ATPase is also activated by KCl. An allosteric transition by anions is assumed.  相似文献   

15.
l-Tryptophan-2,3-dioxygenase, (EC 1.13.1.12) purified from Pseudomonas acidovorans, is inactivated on aerobic aging or on treatment with K3Fe(CN)6, but regains activity in the presence of reducing agents such as sodium ascorbate. Examination of oxidized, inactive enzyme by electron paramagnetic resonance (epr) spectroscopy has revealed the presence of high spin ferriheme (g = 6.2) and of Cu(II) (g = 2.065, g = 2.265) in the enzyme.The epr signal of Cu(II) in inactive tryptophan oxygenase is attenuated on the addition of ascorbate, whereas the high spin ferriheme signal is unaffected, indicating that the site of action of reducing agents in activating the enzyme is the enzymic copper. Quantitation of the Cu(II) signal in inactive tryptophan oxygenase by double integration accounts for 45% of the total copper.Addition of l-tryptophan to either inactive or active enzyme produces a decrease of 44 ± 5% of the epr signal of high spin ferriheme and the emergence of the epr signal of a low spin ferriheme (g1, 2, 3 = 2.66, 2.20, 1.81). Disappearance of the high spin ferriheme is hyperbolic (Hill coefficient, n = 1.02) with respect to l-tryptophan concentration, while the appearance of the low spin ferriheme is sigmoidal (Hill coefficient, n = 1.33) with respect to l-tryptophan concentration. The characteristics of the epr signal of this low spin ferriheme are intermediate between those of the signals of the hydroxides of hemoglobin and myoglobin and those in which two histidines are ligated to the ferriheme of hemoglobin. This may be the first example of the observation by epr of an allosteric parameter of an enzyme.  相似文献   

16.
The role of tertiary conformational changes associated to ligand binding was explored using the allosteric enzyme glucosamine-6-phosphate (GlcN6P) deaminase from Escherichia coli (EcGNPDA) as an experimental model. This is an enzyme of amino sugar catabolism that deaminates GlcN6P, giving fructose 6-phosphate and ammonia, and is allosterically activated by N-acetylglucosamine 6-phosphate (GlcNAc6P). We resorted to the nanoencapsulation of this enzyme in wet silica sol-gels for studying the role of intrasubunit local mobility in its allosteric activation under the suppression of quaternary transition. The gel-trapped enzyme lost its characteristic homotropic cooperativity while keeping its catalytic properties and the allosteric activation by GlcNAc6P. The nanoencapsulation keeps the enzyme in the T quaternary conformation, making possible the study of its allosteric activation under a condition that is not possible to attain in a soluble phase. The involved local transition was slowed down by nanoencapsulation, thus easing the fluorometric analysis of its relaxation kinetics, which revealed an induced-fit mechanism. The absence of cooperativity produced allosterically activated transitory states displaying velocity against substrate concentration curves with apparent negative cooperativity, due to the simultaneous presence of subunits with different substrate affinities. Reaction kinetics experiments performed at different tertiary conformational relaxation times also reveal the sequential nature of the allosteric activation. We assumed as a minimal model the existence of two tertiary states, t and r, of low and high affinity, respectively, for the substrate and the activator. By fitting the velocity-substrate curves as a linear combination of two hyperbolic functions with K t and K r as KM values, we obtained comparable values to those reported for the quaternary conformers in solution fitted to MWC model. These results are discussed in the background of the known crystallographic structures of T and R EcGNPDA conformers. These results are consistent with the postulates of the Tertiary Two-States (TTS) model.  相似文献   

17.
D-3-phosphoglycerate dehydrogenase (PGDH) from Escherichia coli catalyzes the first critical step in serine biosynthesis, and can be allosterically inhibited by serine. In a previous study, we developed a computational method for allosteric site prediction using a coarse-grained two-state Gō Model and perturbation. Two potential allosteric sites were predicted for E. coli PGDH, one close to the active site and the nucleotide binding site (Site I) and the other near the regulatory domain (Site II). In the present study, we discovered allosteric inhibitors and activators based on site I, using a high-throughput virtual screen, and followed by using surface plasmon resonance (SPR) to eliminate false positives. Compounds 1 and 2 demonstrated a low-concentration activation and high-concentration inhibition phenomenon, with IC50 values of 34.8 and 58.0 µM in enzymatic bioassays, respectively, comparable to that of the endogenous allosteric effector, L-serine. For its activation activity, compound 2 exhibited an AC50 value of 34.7 nM. The novel allosteric site discovered in PGDH was L-serine- and substrate-independent. Enzyme kinetics studies showed that these compounds influenced Km, kcat, and kcat/Km. We have also performed structure-activity relationship studies to discover high potency allosteric effectors. Compound 2-2, an analog of compound 2, showed the best in vitro activity with an IC50 of 22.3 µM. Compounds targeting this site can be used as new chemical probes to study metabolic regulation in E. coli. Our study not only identified a novel allosteric site and effectors for PGDH, but also provided a general strategy for designing new regulators for metabolic enzymes.  相似文献   

18.
The EPR properties of the nitric oxide derivative of Octolasium complanatum erythrocruorin have been investigated as a function of the concentration of protons and cations which are known to affect the oxygen-linked allosteric equilibrium. The EPR spectrum has a rhombic shape with gx = 2.08, gz = 2.005, and gy = 1.99, and remains unchanged under all the experimental conditions used. A supernyperfine pattern consisting of nine equally spaced lines is present in the gz region indicating an interaction with two nonequivalent nitrogen atoms, one contributed by the nitric oxide and the other by the proximal histidine. The constancy of the EPR spectrum suggests that changes in the allosteric equilibrium do not involve differences in the strain of the Fe(II)-histidine bond as in tetrameric hemoglobins.  相似文献   

19.
The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis. The CS of Acetobacter aceti has a similar structure, but has been successfully crystallized with bound substrates: both oxaloacetic acid (OAA) and an analog of acetyl coenzyme A (AcCoA). We engineered a variant of E. coli CS wherein five amino acids in the mobile region have been replaced by those in the A. aceti sequence. The purified enzyme shows unusual kinetics with a low affinity for both substrates. Although the crystal structure without ligands is very similar to that of the WT enzyme (except in the mutated region), complexes are formed with both substrates and the allosteric inhibitor NADH. The complex with OAA in the active site identifies a novel OAA-binding residue, Arg306, which has no functional counterpart in other known CS-OAA complexes. This structure may represent an intermediate in a multi-step substrate binding process where Arg306 changes roles from OAA binding to AcCoA binding. The second complex has the substrate analog, S-carboxymethyl-coenzyme A, in the allosteric NADH-binding site and the AcCoA site is not formed. Additional CS variants unable to bind adenylates at the allosteric site show that this second complex is not a factor in positive allosteric activation of AcCoA binding.  相似文献   

20.
The altered oxygen binding curves for various abnormal hemoglobins were analyzed according to a two-state allosteric model. Of three allosteric parameters computed for abnormal hemoglobins, K R was nearly constant, but K T and L varied with the correlation of log c=?0.4 log L, where c is K R/K T. This correlation indicates that the abnormal allosteric oxygen binding of hemoglobin is due to altered molecular properties of the deoxy-T state but not that of the deoxy-R state. To clarify the molecular basis of this idea, resonance Raman spectra in the low-frequency region of abnormal hemoglobins were measured under different solvent conditions. Varied frequencies of iron-histidine stretching Raman lines was found to correlate with varied oxygen affinities (K T) of deoxy-T states. The strength of the iron-histidine bond of deoxy-T states was changed, depending upon the magnitude of the strain imposed on hemes by globin, and this bond presumably comprises an important part of the regulation mechanisms for hemoglobin oxygen binding and structure changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号