首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
花强  杨琛 《生物工程学报》2009,25(9):1303-1311
细胞内代谢反应流量在系统理解细胞代谢特性和指导代谢工程改造等方面都起着重要的作用。由于代谢流量难以直接测量得到,在很多情况下通过跟踪稳定同位素在代谢网络中的转移并进行相应的模型计算能有效地定量代谢流量。代谢流量比率分析法能够高度体现系统的生物化学真实性、辨别细胞代谢网络的拓扑结构,并且能够相对简单快速地定量反应速率等,因此受到代谢工程研究者越来越多的重视。以下着重介绍并讨论了利用代谢物同位体分布信息分析关键代谢节点合成途径的流量比率、基于流量比率的代谢流量解析、以及应用于代谢工程等的相关原理、实验测量、数据分析、使用条件等,以期充分发挥代谢流量比率分析法的优势,并将其拓展推广至更多细胞体系的代谢特性阐明和代谢工程改造中去。  相似文献   

6.
稳定性同位素13C标记实验是分析细胞代谢流的一种重要手段,主要通过质谱检测胞内代谢物中13C标记的同位素分布,并作为胞内代谢流计算时的约束条件,进而通过代谢流分析算法得到相应代谢网络中的通量分布。然而在自然界中,并非只有C元素存在天然稳定性同位素13C,其他元素如O元素也有其天然稳定性同位素17O、18O等,这使得质谱方法所测得的同位素分布中会夹杂除13C标记之外的其他元素的同位素信息,特别是分子中含有较多其他元素的分子,这将导致很大的实验误差,因此需要在进行代谢流计算前进行质谱数据的矫正。本研究提出了一种基于Python语言的天然同位素修正矩阵的构建方法,用于修正同位素分布测量值中由于天然同位素分布引起的测定误差。文中提出的基本修正矩阵幂方法用于构建各元素修正矩阵,结构简单、易于编码实现,可直接应用于13C代谢流分析软件数据前处理。将该修正方法应用于13C标记的黑曲霉(Aspergillus niger)胞内代谢流分析,结果表明本研究提出的方法准确有效,为准确获取微生物胞内代谢流分析提供了可靠的数据修正方法。  相似文献   

7.
The use of parallel labeling experiments for 13C metabolic flux analysis (13C-MFA) has emerged in recent years as the new gold standard in fluxomics. The methodology has been termed COMPLETE-MFA, short for complementary parallel labeling experiments technique for metabolic flux analysis. In this contribution, we have tested the limits of COMPLETE-MFA by demonstrating integrated analysis of 14 parallel labeling experiments with Escherichia coli. An effort on such a massive scale has never been attempted before. In addition to several widely used isotopic tracers such as [1,2-13C]glucose and mixtures of [1-13C]glucose and [U-13C]glucose, four novel tracers were applied in this study: [2,3-13C]glucose, [4,5,6-13C]glucose, [2,3,4,5,6-13C]glucose and a mixture of [1-13C]glucose and [4,5,6-13C]glucose. This allowed us for the first time to compare the performance of a large number of isotopic tracers. Overall, there was no single best tracer for the entire E. coli metabolic network model. Tracers that produced well-resolved fluxes in the upper part of metabolism (glycolysis and pentose phosphate pathways) showed poor performance for fluxes in the lower part of metabolism (TCA cycle and anaplerotic reactions), and vice versa. The best tracer for upper metabolism was 80% [1-13C]glucose+20% [U-13C]glucose, while [4,5,6-13C]glucose and [5-13C]glucose both produced optimal flux resolution in the lower part of metabolism. COMPLETE-MFA improved both flux precision and flux observability, i.e. more independent fluxes were resolved with smaller confidence intervals, especially exchange fluxes. Overall, this study demonstrates that COMPLETE-MFA is a powerful approach for improving flux measurements and that this methodology should be considered in future studies that require very high flux resolution.  相似文献   

8.
Since most bio‐production processes are conducted in a batch or fed‐batch manner, the evaluation of metabolism with respect to time is highly desirable. Toward this aim, we applied 13C‐metabolic flux analysis to nonstationary conditions by measuring the mass isotopomer distribution of intracellular metabolites. We performed our analysis on batch cultures of wild‐type Escherichia coli, as well as on Pyk and Pgi mutants, obtained the fluxes and metabolite concentrations as a function of time. Our results for the wild‐type indicated that the TCA cycle flux tended to increase during growth on glucose. Following glucose exhaustion, cells controlled the branch ratio between the glyoxylate pathway and the TCA cycle, depending on the availability of acetate. In the Pyk mutant, the concentrations of glycolytic intermediates changed drastically over time due to the dumping and feedback inhibition caused by PEP accumulation. Nevertheless, the flux distribution and free amino acid concentrations changed little. The growth rate and the fluxes remained constant in the Pgi mutant and the glucose‐6‐phosphate dehydrogenase reaction was the rate‐limiting step. The measured fluxes were compared with those predicted by flux balance analysis using maximization of biomass yield or ATP production. Our findings indicate that the objective function of biosynthesis became less important as time proceeds on glucose in the wild‐type, while it remained highly important in the Pyk mutant. Furthermore, ATP production was the primary objective function in the Pgi mutant. This study demonstrates how cells adjust their metabolism in response to environmental changes and/or genetic perturbations in the batch cultivation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
10.
E. coli Nissle 1917 (EcN) has long been used as an over‐the‐counter probiotic and has shown potential to be used as a live biotherapeutic. It contains two stably replicating cryptic plasmids, pMUT1, and pMUT2, the function of which is unclear but the presence of which may increase the metabolic burden on the cell, particularly in the context of added recombinant plasmids. In this work, we present a clustered regularly interspaced short palindromic repeats‐Cas9‐based method of curing cryptic plasmids, producing strains cured of one or both plasmids. We then assayed heterologous protein production from three different recombinant plasmids in wild‐type and cured EcN derivatives and found that production of reporter proteins was not significantly different across strains. In addition, we replaced pMUT2 with an engineered version containing an inserted antibiotic resistance reporter gene and demonstrated that the engineered plasmid was stable over 90 generations without selection. These findings have broad implications for the curing of cryptic plasmids and for stable heterologous expression of proteins in this host. Specifically, curing of cryptic plasmids may not be necessary for optimal heterologous expression in this host.  相似文献   

11.
12.
基因的表达受不同的转录调节因子调节。大肠杆菌中的异柠檬酸裂解酶调节因子(IclR)能够抑制编码乙醛酸支路酶的aceBAK操纵子的表达。本研究基于代谢物的13C同位体物质分布来定量解析代谢反应,主要研究了iclR基因在大肠杆菌生理和代谢中的作用。大肠杆菌iclR基因缺失突变株的生长速率、糖耗速率和乙酸的产量相对于原始菌株都有所降低,但菌体得率略有增加。通过代谢途径的流量比率分析发现基因缺失株的乙醛酸支路得到了激活,33%的异柠檬酸流经了乙醛酸支路;戊糖磷酸途径的流量变小,使得CO2的生成量减少。同时,乙醛酸支路激活,但草酰乙酸形成磷酸烯醇式丙酮酸的流量基本不变,说明磷酸烯醇式丙酮酸-乙醛酸循环没有激活,没有过多的碳原子在磷酸烯醇式丙酮酸羧化激酶反应中以CO2形式排出,从而确保了菌体得率。葡萄糖利用速率的降低、乙酰辅酶A的代谢效率提高等使得iclR基因敲除菌的乙酸分泌较原始菌株有所降低。  相似文献   

13.
14.
15.
16.
We have previously reported the development of a 100% genetically defined engineered Escherichia coli strain capable of producing L ‐valine from glucose with a high yield of 0.38 g L ‐valine per gram glucose (0.58 mol L ‐valine per mol glucose) by batch culture. Here we report a systems biological strategy of employing flux response analysis in bioprocess development using L ‐valine production by fed‐batch culture as an example. Through the systems‐level analysis, the source of ATP was found to be important for efficient L ‐valine production. There existed a trade‐off between L ‐valine production and biomass formation, which was optimized for the most efficient L ‐valine production. Furthermore, acetic acid feeding strategy was optimized based on flux response analysis. The final fed‐batch cultivation strategy allowed production of 32.3 g/L L ‐valine, the highest concentration reported for E. coli. This approach of employing systems‐level analysis of metabolic fluxes in developing fed‐batch cultivation strategy would also be applicable in developing strategies for the efficient production of other bioproducts. Biotechnol. Bioeng. 2011; 108:934–946. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Glucose and xylose are the two most abundant sugars derived from the breakdown of lignocellulosic biomass. While aerobic glucose metabolism is relatively well understood in E. coli, until now there have been only a handful of studies focused on anaerobic glucose metabolism and no 13C-flux studies on xylose metabolism. In the absence of experimentally validated flux maps, constraint-based approaches such as MOMA and RELATCH cannot be used to guide new metabolic engineering designs. In this work, we have addressed this critical gap in current understanding by performing comprehensive characterizations of glucose and xylose metabolism under aerobic and anaerobic conditions, using recent state-of-the-art techniques in 13C metabolic flux analysis (13C-MFA). Specifically, we quantified precise metabolic fluxes for each condition by performing parallel labeling experiments and analyzing the data through integrated 13C-MFA using the optimal tracers [1,2-13C]glucose, [1,6-13C]glucose, [1,2-13C]xylose and [5-13C]xylose. We also quantified changes in biomass composition and confirmed turnover of macromolecules by applying [U-13C]glucose and [U-13C]xylose tracers. We demonstrated that under anaerobic growth conditions there is significant turnover of lipids and that a significant portion of CO2 originates from biomass turnover. Using knockout strains, we also demonstrated that β-oxidation is critical for anaerobic growth on xylose. Quantitative analysis of co-factor balances (NADH/FADH2, NADPH, and ATP) for different growth conditions provided new insights regarding the interplay of energy and redox metabolism and the impact on E. coli cell physiology.  相似文献   

18.
The novel concept of isotopic dynamic 13C metabolic flux analysis (ID-13C MFA) enables integrated analysis of isotopomer data from isotopic transient and/or isotopic stationary phase of a 13C labeling experiment, short-time experiments, and an extended range of applications of 13C MFA. In the presented work, an experimental and computational framework consisting of short-time 13C labeling, an integrated rapid sampling procedure, a LC-MS analytical method, numerical integration of the system of isotopomer differential equations, and estimation of metabolic fluxes was developed and applied to determine intracellular fluxes in glycolysis, pentose phosphate pathway (PPP), and citric acid cycle (TCA) in Escherichia coli grown in aerobic, glucose-limited chemostat culture at a dilution rate of D = 0.10 h(-1). Intracellular steady state concentrations were quantified for 12 metabolic intermediates. A total of 90 LC-MS mass isotopomers were quantified at sampling times t = 0, 91, 226, 346, 589 s and at isotopic stationary conditions. Isotopic stationarity was reached within 10 min in glycolytic and PPP metabolites. Consistent flux solutions were obtained by ID-13C MFA using isotopic dynamic and isotopic stationary 13C labeling data and by isotopic stationary 13C MFA (IS-13C MFA) using solely isotopic stationary data. It is demonstrated that integration of dynamic 13C labeling data increases the sensitivity of flux estimation, particularly at the glucose-6-phosphate branch point. The identified split ratio between glycolysis and PPP was 55%:44%. These results were confirmed by IS-13C MFA additionally using labeling data in proteinogenic amino acids (GC-MS) obtained after 5 h from sampled biomass.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号