首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of a novel bioactive agent N‐{[N‐(2‐dimethylamino) ethyl] acridine‐4‐carboxamide}‐α‐alanine [N‐(ACR‐4‐CA)‐α‐ALA] with human serum albumin (HSA) was investigated by fluorescence spectroscopy, UV–vis absorption and circular dichroism spectrophotometric techniques under simulative physiological conditions. The fluorescence quenching of HSA by addition of N‐(ACR‐4‐CA)‐α‐ALA is due to static quenching and hydrogen bonding. Moreover, hydrophobic interactions play a role in the binding of N‐(ACR‐4‐CA)‐α‐ALA to HSA as well. The number of binding sites, n, and the binding constant values, KA, were noted to be 0.88 and 3.4 × 104 L mol?1 for N‐(ACR‐4‐CA)‐α‐ALA at 293 K. The binding distances and the energy transfer efficiency between N‐(ACR‐4‐CA)‐α‐ALA and protein were determined. The negative value of enthalpy change and positive value of entropy change in the present study indicated that both hydrogen bonding and hydrophobic forces played a major role in the binding of N‐(ACR‐4‐CA)‐α‐ALA to HSA. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The drug–serum albumin interaction plays a dominant role in drug efficacy and disposition. The glycation of serum albumin that occurs during diabetes may affect its drug‐binding properties in vivo. In order to evaluate the interactivity characteristics of cyanidin‐3‐O‐glucoside (C3G) with human serum albumin (HSA) and glycated human serum albumin (gHSA), this study was undertaken using multiple spectroscopic techniques and molecular modeling analysis. Time‐resolved fluorescence and the thermodynamic parameters indicated that the quenching mechanism was static quenching, and hydrogen bonding and Van der Waals force were the main forces. The protein fluorescence could be quenched by C3G, whereas the polarity of the fluorophore was not obviously changed. C3G significantly altered the secondary structure of the proteins. Furthermore, the interaction force that existed in the HSA–C3G system was greater than that in the gHSA–C3G system. Fluorescence excitation emission matrix spectra, red edge excitation shift, Fourier transform infrared spectroscopy and circular dichroism spectra provided further evidence that glycation could inhibit the binding between C3G and proteins. In addition, molecular modeling analysis supported the experimental results. The results provided more details for the application of C3G in the treatment of diabetes.  相似文献   

3.
This study was a detailed characterization of the interaction of a series of imidazole derivatives with a model transport protein, human serum albumin (HSA). Fluorescence and time‐resolved fluorescence results showed the existence of a static quenching mode for the HSA–imidazole derivative interaction. The binding constant at 296 K was in the order of 104 M–1, showing high affinity between the imidazole derivatives and HSA. A site marker competition study combined with molecular docking revealed that the imidazole derivatives bound to subdomain IIA of HSA (Sudlow's site I). Furthermore, the results of synchronous, 3D, Fourier transform infrared, circular dichroism and UV–vis spectroscopy demonstrated that the secondary structure of HSA was altered in the presence of the imidazole derivatives. The specific binding distance, r, between the donor and acceptor was obtained according to fluorescence resonance energy transfer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator.  相似文献   

5.
The interactions between the three kinds of naphthalimide‐based anti‐tumor drugs (NADA, NADB, NADC) and human serum albumin (HSA) under simulated physiological conditions were investigated by fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling. The results of the fluorescence quenching spectroscopy showed that the quenching mechanisms for different drugs were static and their affinity was in a descending order of NADA > NADB > NADC. The relative thermodynamic parameters indicated that hydrophobic force was the predominant intermolecular force in the binding of NAD to HSA, while van der Waals interactions and hydrogen bonds could not be ignored. The results of site marker competitive experiment confirmed that the binding site of HSA primarily took place in site I. Furthermore, the molecular modeling study was consistent with these results. The study of circular dichroism spectra demonstrated that the presence of NADs decreased the α‐helical content of HSA and induced the change of the secondary structure of HSA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Norethindrone acetate (NETA) is a fatty acid ester of norethindrone (NET) that can convert to its more active parent compound NET when orally administered. To study the interactions of NETA and NET with human serum albumin (HSA), we applied fluorescence spectroscopy, circular dichroism (CD), and molecular docking. The effects of metal ions on the HSA–NETA/NET system were also explored. Fluorescence data showed that the quenching mechanism of HSA by NETA and NET was consistent with a static model and that the binding constant of NETA was higher than that of NET. Thermodynamic parameters indicated that hydrogen bonds and van der Waals forces were the main forces maintaining the stability of the HSA–NETA/NET complex. Molecular modeling studies revealed that NETA and NET were bound within subdomain IIA of HSA, in accordance with the site probe results. Synchronous fluorescence spectroscopy, CD, and three‐dimensional fluorescence spectroscopy further confirmed that the binding of NETA/NET to HSA changed the secondary structure of the protein. All other metal ions, except for Ca2+, decreased the K value of the HSA–NETA/NET system with enhancement of the maximum effectiveness of NETA/NET. Three commercially available steroid hormone drugs influenced the binding ability of NETA on HSA to different extents. This study provides novel insights into the interactions between HSA and NETA/NET, as well as a solid foundation for future research on drug pharmacokinetics and pharmacodynamics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The interaction mechanisms of two ethidium derivatives, 3,8-dibenzoylamino-5-ethyl-6-phenylphenantridinium chloride (E2) and 3,8-diphenylacetylamino-5-ethyl-6-phenylphenantridinium chloride (E3) with serum albumins (BSA and HSA) have been investigated by a combined experimental and computational approach. Fluorescence quenching and UV–vis results revealed that the interaction of derivatives with albumins resulted in formation of ground-state complexes and the obtained Stern–Volmer quenching constants designate the presence of a static component in the quenching mechanisms. Thermodynamic parameters (ΔH and ΔS values) point out the ionic interactions play the major role in E2-BSA, E2-HSA and E3-HSA complexes. The van der Waals interactions are dominant forces in E3-BSA complex. Moreover, the obtained results in this study were supported with computational analyzes which have same tendency.  相似文献   

8.
Interaction of 3‐styrylindoles 1–8 viz. 3‐(2‐phenylethenyl‐E)‐NH‐indole (1), 3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (2), 5‐bromo‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (3), 5‐methoxy‐3‐[2‐(4‐nitrophenyl)ethenyl‐E]‐NH‐indole (4), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐NH‐indole (5), 3‐[2‐(4‐cyanophenyl)ethenyl‐E]‐N‐ethylindole (6), 5‐bromo‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (7) and 5‐methoxy‐3‐[2‐(4‐chlorophenyl)ethenyl‐E]‐NH‐indole (8) with bovine serum albumin (BSA) was examined by UV–vis and steady‐state fluorescence spectroscopy. The fluorescence intensity of 1–8 increases with the increasing BSA concentration. Upon binding with BSA, while 1 and 5–8 show a blue shift in their λf max, 2–4 do not exhibit such behavior. Compounds 1–8 also quench the 345 nm fluorescence of BSA in phosphate buffer (λex, 280 nm). These compounds intercalate in the hydrophobic regions of BSA, as evidenced by the determination of BSA binding site micropolarity using compounds 2–8. As evidenced by the estimation of energy transfer efficiency and distance between the donor (BSA‐Trp‐212) and the acceptor (3‐styrylindoles), the halo‐substituted compounds 3 and 7 interact with BSA more effectively than the other 3‐strylindoles. These compounds have potential for use as neutral and hydrophobic fluorescence probes for examining the microenvironments in proteins, polymers, micelles, etc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Three sodium salts of (2E)‐3‐(4'‐halophenyl)prop‐2‐enoyl sulfachloropyrazine (CCSCP) were synthesized and their structures were determined by 1H and 13C NMR, LC‐MS and IR. The binding properties between CCSCPs and bovine serum albumin (BSA) were studied using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results indicate that the fluorescence quenching mechanisms between BSA and CCSCPs were static quenching at low concentrations of CCSCPs or combined quenching (static and dynamic) at higher CCSCP concentrations of 298, 303 and 308 K. The binding constants, binding sites and corresponding thermodynamic parameters (ΔH, ΔS, ΔG) were calculated at different temperatures. All ΔG values were negative, which revealed that the binding processes were spontaneous. Although all CCSCPs had negative ΔH and positive ΔS, the contributions of ΔH and ΔS to ΔG values were different. When the 4'‐substituent was fluorine or chlorine, van der Waals interactions and hydrogen bonds were the main interaction forces. However, when the halogen was bromine, ionic interaction and proton transfer controlled the overall energetics. The binding distances between CCSCPs and BSA were determined using the Förster non‐radiation energy transfer theory and the effects of CCSCPs on the conformation of BSA were analyzed by synchronous fluorescence spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The interaction between human serum albumin (HSA) and aurantio‐obtusin was investigated by spectroscopic techniques combined with molecular docking. The Stern–Volmer quenching constants (KSV) decreased from 8.56 × 105 M?1 to 5.13 × 105 M?1 with a rise in temperatures from 289 to 310 K, indicating that aurantio‐obtusin produced a static quenching of the intrinsic fluorescence of HSA. Time‐resolved fluorescence studies proved again that the static quenching mechanism was involved in the interaction. The sign and magnitude of the enthalpy change as well as the entropy change suggested involvement of hydrogen bonding and hydrophobic interaction in aurantio‐obtusin–HSA complex formation. Aurantio‐obtusin binding to HSA produced significant alterations in secondary structures of HSA, as revealed from the time‐resolved fluorescence, Fourier transform infrared (FT‐IR) spectroscopy, three‐dimensional (3D) fluorescence and circular dichroism (CD) spectral results. Molecular docking study and site marker competitive experiment confirmed aurantio‐obtusin bound to HSA at site I (subdomain IIA).  相似文献   

11.
12.
Fluorescence spectroscopy and molecular simulation were explored to study the interaction between caffeic acid and human serum albumin (HSA). The experimental results indicated that the fluorescence quenching mechanism between caffeic acid and HSA is a static quenching, which was proved again by the analysis of fluorescence lifetime by time‐correlated single photon counting. The binding process is spontaneous and the hydrophobic force is the main force between caffeic acid and HSA. In addition, the binding of caffeic acid to HSA was modeled by molecular dynamics simulations. The root mean square deviations, root mean square fluctuations, radius of gyration and the number of hydrogen bonds of the molecular dynamic (MD) simulation process were analyzed. Both experimental and modeling results demonstrated strong binding between HSA and caffeic acid. HSA had a slight conformational change when it binds with caffeic acid. The obtained information is useful for HSA drug design. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Under simulated physiological conditions, the reaction mechanism between cefixime and bovine serum albumin at different temperatures (293, 303 and 310 K) was investigated using a fluorescence quenching method and synchronous fluorescence method, respectively. The results indicated that the fluorescence intensity and synchronous fluorescence intensity of bovine serum albumin decreased regularly on the addition of cefixime. In addition, the quenching mechanism, binding constants, number of binding sites, type of interaction force and energy‐transfer parameters of cefixime with bovine serum albumin obtained from two methods using the same equation were consistent. The results indicated that the synchronous fluorescence spectrometry could be used to study the binding mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Quercetin (3,3',4',5,7-pentahydroxyflavone), a ubiquitous, bioactive plant flavonoid, is known to possess anti-cancer, anti-tumor, and other important therapeutic activities of significant potency and low systemic toxicity. In this communication, we report for the first time a study on the interactions of quercetin with the plasma protein human serum albumin (HSA), exploiting the intrinsic fluorescence emission properties of quercetin as a probe. Quercetin is weakly fluorescent in aqueous buffer medium, with an emission maximum at approximately 538 nm. Binding of quercetin with HSA leads to dramatic enhancement in the fluorescence emission intensity and anisotropy (r), along with significant changes in the fluorescence excitation and emission profiles. The excitation spectrum suggests occurrence of efficient F?rster type resonance energy transfer (FRET) from the single tryptophan-214 residue of HSA to the protein bound quercetin. The emission, excitation, and anisotropy (r=0.18 at [HSA]=30 microM) data (using the native protein) along with emission studies of quercetin using partially denatured HSA (by 8M urea) indicate that the quercetin molecules bind at a motionally restricted site near tryptophan-214 in the interdomain cleft region of HSA. Furthermore, the binding constant (K=1.9 x 10(5)M(-1)) and Gibbs free energy change (deltaG(0)=-30.12 kJ/mol)) for quercetin-HSA interaction have been calculated from the relevant anisotropy data. Implications of these results are examined, particularly in relation to prospective applications in biomedical research.  相似文献   

15.
A novel method was developed for studying the interaction between epirubicin hydrochloride (EPI) and bovine serum albumin (BSA) by fluorescence spectrometry. Fe3O4 magnetic nanoparticles (MNPs) synthesized and functionalized with thiol group were employed for the immobilization and separation of target BSA in reaction solutions. The concentrations of the non‐immobilized BSA and unbound EPI were obtained separately by fluorescence spectrometry. The binding constants (K a ) and number of binding sites (n ) of EPI with BSA were calculated. In this study, the K a value was 5.05 × 105 L mol?1, suggesting a strong binding of EPI to BSA, and the n value was 1.15. The effects of common metal ions on K a of EPI with BSA were also investigated, and the results showed there was clearly bindings between the metal ions and BSA. The precise binding sites of EPI on BSA were determined as being in site I from the competitive displacement experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding and controlling the interaction between the polymer methyldopa (2‐amino‐3‐(3,4‐dihydroxyphenyl)‐2‐methyl‐propanoic acid) (PMDP)–γ‐Fe2O3 nanoparticles and biological fluids is important if the potential of nanoparticles (NPs) in biomedicine is to be realized. Physicochemical studies on the interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of the NP surface, interactions between human serum albumin (HSA) and PMDP–γ‐Fe2O3 NPs were investigated. Here, the adsorption of HSA onto small (10–30 nm diameter) PMDP–γ‐Fe2O3 NPs was quantitatively analyzed using spectroscopic methods. The fluorescence quenching data were checked for the inner‐filter effect, the main confounding factor in the observed quenching. The binding constants, Ka, were calculated at different temperatures, using a nonlinear fit to the experimental data, and the thermodynamic parameters ?H, ?S and ?G were given. The obtained thermodynamic signature suggests that hydrophobic interactions at least are present. This result indicates that the structure of the protein turns from a structureless denatured state at pH 3 into an ordered biologically active native state on addition of PMDP–γ‐Fe2O3 NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Di‐(2‐ethylhexyl) phthalate (DEHP) is widely used as a plasticizer in industrial production, but may have a potential health risk. In this study, the binding characteristics of DEHP with human serum albumin (HSA) in aqueous solution at pH 7.4 were determined using UV/vis absorption, fluorescence, Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD), along with a molecular simulation technique. Analysis of the fluorescence titration data at different temperatures suggested that the fluorescence quenching mechanism of HSA by DEHP was static. The calculated thermodynamic parameters indicated that hydrophobic forces played a predominant role in formation of the DEHP–HSA complex, but hydrogen bonds could not be omitted. Site marker competitive experiments and denaturation studies showed that the binding of DEHP to HSA primarily took place in subdomain IIA of HSA, and molecular docking results further corroborated the binding sites. The synchronous fluorescence, UV/vis absorption, FTIR and CD spectra revealed that the addition of DEHP induced changes in the secondary structure of HSA. Protein surface hydrophobicity (PSH) tests indicated that DEHP binding to HSA caused an increase in the PSH. Moreover, the effects of some metal ions on the binding constant of DEHP − HSA interaction were also investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A series of 4‐alkoxyethoxy‐N‐octadecyl‐1,8‐naphthalimides with intense blue fluorescence were designed and synthesized as polarity and spectrofluorimetric probes for the determination of proteins. In solvents of different polarities, the Stokes shifts of two dyes increased with increasing solvent polarity and fluorescence quantum yields decreased significantly, suggesting that electronic transiting from ground to excited states was π–π* in character. Dipole moment changes were estimated from solvent‐dependent Stokes shift data using a solvatochromic method based on bulk solvent polarity functions and the microscopic solvent polarity parameter (). These results were generally consistent with semi‐empirical molecular orbital calculations and were found to be quite reliable based on the fact that the correlation of the solvatochromic Stokes shifts with was superior to that obtained using bulk solvent polarity functions. Fluorescence data revealed that the fluorescence quenching of human serum albumin (HSA) by dyes was the result of the formation of a Dye–HSA complex. The method was applied to the determination of total proteins (HSA + immunoglobulins) in human serum samples and results were in good agreement with those reported by the research institute. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Three novel p‐hydroxybenzoic acid derivatives (HSOP, HSOX, HSCP) were synthesized from p‐hydroxybenzoic acid and sulfonamides (sulfamonomethoxine sodium, sulfamethoxazole and sulfachloropyridazine sodium) and characterized by elemental analysis, HNMR and MS. Interactions between derivatives and bovine serum albumin (BSA) were studied by fluorescence quenching spectra, UV–vis absorption spectra and time‐resolved fluorescence spectra. Based on fluorescence quenching calculation and Förster's non‐radioactive energy transfer theory, the values of the binding constants, basic thermodynamic parameters and binding distances were obtained. Experimental results indicated that the three derivatives had a strong ability to quench fluorescence from BSA and that the binding reactions of the derivatives with BSA were a static quenching process. Thermodynamic parameters showed that binding reactions were spontaneous and exothermic and hydrogen bond and van der Waals force were predominant intermolecular forces between the derivatives and BSA. Synchronous fluorescence spectra suggested that HSOX and HSCP had little effect on the microenvironment and conformation of BSA in the binding reactions but the microenvironments around tyrosine residues were disturbed and polarity around tyrosine residues increased in the presence of HSOP. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
This study explored interactions between m‐phenylenediamine (MPD) and bovine serum albumin (BSA) by spectrophotometry. The Stern‐Volmer equation and UV‐vis spectra examination at different temperatures and pH were used to explore different quenching mechanisms. Under simulated physiological conditions, the binding distance between MPD and BSA was 5.18 nm with a ratio of 1:1. The quenching effect of MPD on BSA intrinsic fluorescence depended strongly on pH, and maximum quenching was observed at alkaline pH. Moreover, the thermodynamic parameters of the MPD‐BSA system showed that the predominant acting force between MPD and BSA was a hydrophobic force. The impact of MPD on the conformation of BSA and the effects of co‐ions on binding interactions were also examined. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号