首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transporter MsbA is a kind of multidrug resistance ATP‐binding cassette transporter that can transport lipid A, lipopolysaccharides, and some amphipathic drugs from the cytoplasmic to the periplasmic side of the inner membrane. In this work, we explored the allosteric pathway of MsbA from the inward‐ to outward‐facing states during the substrate transport process with the adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The large‐scale closing motions of the nucleotide‐binding domains occur first, accompanied with a twisting motion at the same time, which becomes more obvious in middle and later stages, especially for the later. This twisting motion plays an important role for the rearrangement of transmembrane helices and the opening of transmembrane domains on the periplasmic side that mainly take place in middle and later stages respectively. The topological structure plays an important role in the motion correlations above. The conformational changes of nucleotide‐binding domains are propagated to the transmembrane domains via the intracellular helices IH1 and IH2. Additionally, the movement of the transmembrane domains proceeds in a nonrigid body, and the two monomers move in a symmetrical way, which is consistent with the symmetrical structure of MsbA. These results are helpful for understanding the transport mechanism of the ATP‐binding cassette exporters. Proteins 2015; 83:1643–1653. © 2015 Wiley Periodicals, Inc.  相似文献   

2.
Protein collective motions play a critical role in many biochemical processes. How to predict the functional motions and the related key residue interactions in proteins is important for our understanding in the mechanism of the biochemical processes. Normal mode analysis (NMA) of the elastic network model (ENM) is one of the effective approaches to investigate the structure-encoded motions in proteins. However, the motion modes revealed by the conventional NMA approach do not necessarily correspond to a specific function of protein. In the present work, a new analysis method was proposed to identify the motion modes responsible for a specific function of proteins and then predict the key residue interactions involved in the functional motions by using a perturbation approach. In our method, an internal coordinate that accounts for the specific function was introduced, and the Cartesian coordinate space was transformed into the internal/Cartesian space by using linear approximation, where the introduced internal coordinate serves as one of the axes of the coordinate space. NMA of ENM in this internal/Cartesian space was performed and the function-relevant motion modes were identified according to their contributions to the specific function of proteins. Then the key residue interactions important for the functional motions of the protein were predicted as the interactions whose perturbation largely influences the fluctuation along the internal coordinate. Using our proposed methods, the maltose transporter (MalFGK2) from E. Coli was studied. The functional motions and the key residue interactions that are related to the channel-gating function of this protein were successfully identified.  相似文献   

3.
The maltose transporter of Escherichia coli is a member of the ATP‐binding cassette (ABC) transporter superfamily. The crystal structures of maltose transporter MalK have been determined for distinct conformations in the presence and absence of the ligand ATP, and other interacting proteins. Using the distinct MalK structures, normal mode analysis was performed to understand the dynamics behavior of the system. A network of dynamically important residues was obtained from the normal mode analysis and the analysis of point mutation on the normal modes. Our results suggest that the intradomain rotation occurs earlier than the interdomain rotation during the maltose‐binding protein (MBP)‐driven conformational changes of MalK. We inquire if protein motion and functional‐driven evolutionary conservation are related. The sequence conservation of MalK was analyzed to derive a network of evolutionarily important residues. There are highly significant correlations between protein sequence and protein dynamics in many regions on the maltose transporter MalK, suggesting a link between the protein evolution and dynamics. The significant overlaps between the network of dynamically important residues and the network of evolutionarily important residues form a network of dynamically conserved residues. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Zheng W  Brooks BR  Hummer G 《Proteins》2007,69(1):43-57
We develop a mixed elastic network model (MENM) to study large-scale conformational transitions of proteins between two (or more) known structures. Elastic network potentials for the beginning and end states of a transition are combined, in effect, by adding their respective partition functions. The resulting effective MENM energy function smoothly interpolates between the original surfaces, and retains the beginning and end structures as local minima. Saddle points, transition paths, potentials of mean force, and partition functions can be found efficiently by largely analytic methods. To characterize the protein motions during a conformational transition, we follow "transition paths" on the MENM surface that connect the beginning and end structures and are invariant to parameterizations of the model and the mathematical form of the mixing scheme. As illustrations of the general formalism, we study large-scale conformation changes of the motor proteins KIF1A kinesin and myosin II. We generate possible transition paths for these two proteins that reveal details of their conformational motions. The MENM formalism is computationally efficient and generally applicable even for large protein systems that undergo highly collective structural changes.  相似文献   

5.
Mustafa Tekpinar  Wenjun Zheng 《Proteins》2010,78(11):2469-2481
The decryption of sequence of structural events during protein conformational transitions is essential to a detailed understanding of molecular functions ofvarious biological nanomachines. Coarse‐grained models have proven useful by allowing highly efficient simulations of protein conformational dynamics. By combining two coarse‐grained elastic network models constructed based on the beginning and end conformations of a transition, we have developed an interpolated elastic network model to generate a transition pathway between the two protein conformations. For validation, we have predicted the order of local and global conformational changes during key ATP‐driven transitions in three important biological nanomachines (myosin, F1 ATPase and chaperonin GroEL). We have found that the local conformational change associated with the closing of active site precedes the global conformational change leading to mechanical motions. Our finding is in good agreement with the distribution of intermediate experimental structures, and it supports the importance of local motions at active site to drive or gate various conformational transitions underlying the workings of a diverse range of biological nanomachines. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Protein topology defined by the matrix of residue contacts has proved to be a fruitful basis for the study of protein dynamics. The widely implemented coarse-grained elastic network model of backbone fluctuations has been used to describe crystallographic temperature factors, allosteric couplings, and some aspects of the folding pathway. In the present study, we develop a model of protein dynamics based on the classical equations of motion of a damped network model (DNM) that describes the folding path from a completely unfolded state to the native conformation through a single-well potential derived purely from the native conformation. The kinetic energy gained through the collapse of the protein chain is dissipated through a friction term in the equations of motion that models the water bath. This approach is completely general and sufficiently fast that it can be applied to large proteins. Folding pathways for various proteins of different classes are described and shown to correlate with experimental observations and molecular dynamics and Monte Carlo simulations. Allosteric transitions between alternative protein structures are also modeled within the DNM through an asymmetric double-well potential.  相似文献   

7.
Amit Srivastava  Rony Granek 《Proteins》2016,84(12):1767-1775
Motivated by single molecule experiments and recent molecular dynamics (MD) studies, we propose a simple and computationally efficient method based on a tensorial elastic network model to investigate the unfolding pathways of proteins under temperature variation. The tensorial elastic network model, which relies on the native state topology of a protein, combines the anisotropic network model, the bond bending elasticity, and the backbone twist elasticity to successfully predicts both the isotropic and anisotropic fluctuations in a manner similar to the Gaussian network model and anisotropic network model. The unfolding process is modeled by breaking the native contacts between residues one by one, and by assuming a threshold value for strain fluctuation. Using this method, we simulated the unfolding processes of four well‐characterized proteins: chymotrypsin inhibitor, barnase, ubiquitein, and adenalyate kinase. We found that this step‐wise process leads to two or more cooperative, first‐order‐like transitions between partial denaturation states. The sequence of unfolding events obtained using this method is consistent with experimental and MD studies. The results also imply that the native topology of proteins “encrypts” information regarding their unfolding process. Proteins 2016; 84:1767–1775. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
In order to systematically analyze functionally relevant dynamical correlations within macromolecular complexes, we have developed computational methods based on the normal mode analysis of an elastic network model. First, we define two types of dynamical correlations (fluctuation-based and density-based), which are computed by summing up contributions from all low-frequency normal modes up to a given cutoff. Then we use them to select dynamically important "hinge residues" whose elastic distortion affects the fluctuations of a large number of residues. Second, in order to clarify long-range dynamical correlations, we decompose the dynamical correlations to individual normal modes to identify the most relevant modes. We have applied these methods to the analysis of the motor domain of Dictyostelium myosin and have obtained the following three interesting results that shed light on its mechanism of force generation: first, we find the hinge residues are distributed over several key inter-subdomain joints (including the nucleotide-binding pocket, the relay helix, the SH1 helix, the strut between the upper 50 kDa and the lower 50 kDa subdomains), which is consistent with their hypothesized roles in modulating functionally relevant inter-subdomain conformational changes; second, a single mode 7 (for structure 1VOM) is found to dominate the fluctuation-based correlations between the converter/strut and the nucleotide-binding pocket, revealing a surprising simplicity for their intriguing roles in the force generation mechanism; finally, we find a negative density-based correlation between the strut and the nucleotide-binding pocket, which is consistent with the hypothesized signaling pathway that links the actin-binding site's opening/closing with the nucleotide-binding pocket's closing/opening.  相似文献   

9.
The allosteric transition of threonine-sensitive aspartokinase I-homoserine dehydrogenase I from Escherichia coli has been studied by time-resolved fluorescence spectroscopy. Fluorescence decay can be resolved into 2 distinct classes of tryptophan emitters: a fast component, with a lifetime of about 1.5 ns; and a slow component, with a lifetime of about 4.5 ns. The fluorescence properties of the slow component are modified by the allosteric transition. In the T-form of the enzyme stabilized by threonine, the lifetime of the slow component is longer, with a red-shifted spectrum; its accessibility to quenching by acrylamide becomes slightly higher without any decrease of fluorescence anisotropy. These results indicate a change in polarity of the slow component environment. The quaternary structure change associated with the allosteric transition probably involves global movements of structural domains without leading to any local mobility on the nanosecond time-scale. We suggest that the slow component corresponds to the unique tryptophan of the buried kinase domain.  相似文献   

10.
Recently, the atomic structures of both the closed and open forms of Group 2 chaperonin protein Mm‐cpn were revealed through crystallography and cryo‐electron microscopy. This toroidal‐like chaperonin is composed of two eightfold rings that face back‐to‐back. To gain a computational advantage, we used a symmetry constrained elastic network model (SCENM), which requires only a repeated subunit structure and its symmetric connectivity to neighboring subunits to simulate the entire system. In the case of chaperonin, only six subunits (i.e., three from each ring) were used out of the eight subunits comprising each ring. A smooth and symmetric pathway between the open and closed conformations was generated by elastic network interpolation (ENI). To support this result, we also performed a symmetry‐constrained normal mode analysis (NMA), which revealed the intrinsic vibration features of the given structures. The NMA and ENI results for the representative single subunit were duplicated according to the symmetry pattern to reconstruct the entire assembly. To test the feasibility of the symmetry model, its results were also compared with those obtained from the full model. This study allowed the folding mechanism of chaperonin Mm‐cpn to be elucidated by SCENM in a timely manner.  相似文献   

11.
We previously reported the construction of a family of reagentless fluorescent biosensor proteins by the structure-based design of conjugation sites for a single, environmentally sensitive small molecule dye, thus providing a mechanism for the transduction of ligand-induced conformational changes into a macroscopic fluorescence observable. Here we investigate the microscopic mechanisms that may be responsible for the macroscopic fluorescent changes in such Fluorescent Allosteric Signal Transduction (FAST) proteins. As case studies, we selected three individual cysteine mutations (F92C, D95C, and S233C) of Escherichia coli maltose binding protein (MBP) covalently labeled with a single small molecule fluorescent probe, N-((2-iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (NBD), each giving rise to a robust FAST protein with a distinct maltose-dependent fluorescence response. The fluorescence emission intensity, anisotropy, lifetime, and iodide-dependent fluorescence quenching were determined for each conjugate in the presence and absence of maltose. Structure-derived solvent accessible surface areas of the three FAST proteins are consistent with experimentally observed quenching data. The D95C protein exhibits the largest fluorescence change upon maltose binding. This mutant was selected for further characterization, and residues surrounding the fluorophore coupling site were mutagenized. Analysis of the resulting mutant FAST proteins suggests that specific hydrogen-bonding interactions between the fluorophore molecule and two tyrosine side-chains, Tyr171 and Tyr176, in the open state but not the closed, are responsible for the dramatic fluorescence response of this construct. Taken together these results provide insights that can be used in future design cycles to construct fluorescent biosensors that optimize signaling by engineering specific hydrogen bonds between a fluorophore and protein.  相似文献   

12.
The transport and regulation of maltose utilization by Torulaspora delbrueckii, one of the most abundant non-Saccharomyces species present in home-made corn and rye bread dough, has been investigated. A DNA fragment containing the MAL11 gene from T. delbrueckii (TdMAL11) was isolated by complementation cloning in Saccharomyces cerevisiae. DNA sequence analysis revealed the presence of an open reading frame (ORF) of 1884 bp, encoding a 627-amino acid membrane protein, which displays high homology to other yeast maltose transporters. Upstream of TdMAL11, the DNA insert contained a partial ORF (TdMAL12) on the opposite strand, which showed high similarity to the S. cerevisiae MAL12 gene. Sequence analysis, Northern blot and transport measurements indicated that TdMAL11 expression is regulated by the carbon source. Attempts to disrupt TdMAL11 revealed the presence of two functional MAL loci. Disruption of a single copy decreased the V(max) of maltose transport, but not the K(m), whereas the double disruption abolished the uptake of this sugar in T. delbrueckii.  相似文献   

13.
Alexander Veksler  Rony Granek 《Proteins》2012,80(12):2692-2700
We present a tensorial elastic network model (TNM) to describe the equilibrium fluctuations of proteins near their native fold structure. The model combines the anisotropic network model (ANM), bond bending elasticity, and backbone twist elasticity, and can predict both the isotropic fluctuations, similar to the Gaussian network model (GNM), and anisotropic fluctuations, similar to the ANM. TNM performs equally well for B‐factor predictions as GNM and predicts the anisotropy of B‐factors better than ANM. The model also outperforms the ANM in its predictability of the complete anisotropic displacement parameters. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

14.
目的 变构效应在蛋白质生物学功能执行过程中发挥着重要的调控作用,如何基于蛋白质空间结构,有效识别变构信号的传播路径和关键的残基位点是蛋白质结构-功能关系研究领域的热点科学问题。方法 本研究利用基于弹性网络模型(elastic network model,ENM)的力分布计算方法,通过分析蛋白质对外力的响应过程,来识别体系的变构路径以及变构过程中的关键残基。在该方法中,对蛋白质的关键变构位点施加外力,通过对体系形变以及内力分布情况的分析,有效识别与外力承载区域形变相耦合的关键残基,从而得到力信号在蛋白质结构内的传播路径。结果 利用该方法研究了人类磷酸甘油酸激酶(human phosphoglycerate kinase,hPGK)和蛋白质酪氨酸磷酸酶(protein tyrosine phosphatase,PTP)PDZ2结构域的变构调控路径和关键残基。对于hPGK,识别出从底物结合位点到铰链区的两条变构信号传导路径。对于PTP PDZ2,也成功识别出从配体结合位点传递到蛋白质远端的两条长程变构调控路径。计算结果与实验和分子动力学(molecular dynamics,MD)模拟得到的结果一致。结论 本研究为蛋白质体系关键残基识别及变构路径研究提供了有效的分析方法。  相似文献   

15.
16.
An elastic network model (ENM), usually Cα coarse‐grained one, has been widely used to study protein dynamics as an alternative to classical molecular dynamics simulation. This simple approach dramatically saves the computational cost, but sometimes fails to describe a feasible conformational change due to unrealistically excessive spring connections. To overcome this limitation, we propose a mass‐weighted chemical elastic network model (MWCENM) in which the total mass of each residue is assumed to be concentrated on the representative alpha carbon atom and various stiffness values are precisely assigned according to the types of chemical interactions. We test MWCENM on several well‐known proteins of which both closed and open conformations are available as well as three α‐helix rich proteins. Their normal mode analysis reveals that MWCENM not only generates more plausible conformational changes, especially for closed forms of proteins, but also preserves protein secondary structures thus distinguishing MWCENM from traditional ENMs. In addition, MWCENM also reduces computational burden by using a more sparse stiffness matrix.  相似文献   

17.
Zheng W  Liao JC  Brooks BR  Doniach S 《Proteins》2007,67(4):886-896
Hepatitis C virus NS3 helicase is an enzyme that unwinds double-stranded polynucleotides in an ATP-dependent reaction. It provides a promising target for small molecule therapeutic agents against hepatitis C. Design of such drugs requires a thorough understanding of the dynamical nature of the mechanochemical functioning of the helicase. Despite recent progress, the detailed mechanism of the coupling between ATPase activity and helicase activity remains unclear. Based on an elastic network model (ENM), we apply two computational analysis tools to probe the dynamical mechanism underlying the allosteric coupling between ATP binding and polynucleotide binding in this enzyme. The correlation analysis identifies a network of hot-spot residues that dynamically couple the ATP-binding site and the polynucleotide-binding site. Several of these key residues have been found by mutational experiments as functionally important, while our analysis also reveals previously unexplored hot-spot residues that are potential targets for future mutational studies. The conformational changes between different crystal structures of NS3 helicase are found to be dominated by the lowest frequency mode solved from the ENM. This mode corresponds to a hinge motion of the highly flexible domain 2. This motion simultaneously modulates the opening/closing of the domains 1-2 cleft where ATP binds, and the domains 2-3 cleft where the polynucleotide binds. Additionally, a small twisting motion of domain 1, observed in both mode 1 and the computed ATP binding induced conformational change, fine-tunes the binding affinity of the domains 1-3 interface for the polynucleotide. The combination of these motions facilitates the translocation of a single-stranded polynucleotide in an inchworm-like manner.  相似文献   

18.
The Escherichia coli maltose transporter MalFGK2‐E belongs to the protein superfamily of ATP‐binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide‐binding domains (NBDs) MalK2. In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all‐atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward‐facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF‐P2), and thus prevented the incorrect arrangement of the MalF C‐terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2. This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.  相似文献   

19.
We analyze the mechanical properties and putative dynamical fluctuations of a variety of viral capsids comprising different sizes and quasi-equivalent symmetries by performing normal mode analysis using the elastic network model. The expansion of the capsid to a swollen state is studied using normal modes and is compared with the experimentally observed conformational change for three of the viruses for which experimental data exist. We show that a combination of one or two normal modes captures remarkably well the overall translation that dominates the motion between the two conformational states, and reproduces the overall conformational change. We observe for all of the viral capsids that the nature of the modes is different. In particular for the T=7 virus, HK97, for which the shape of the capsid changes from spherical to faceted polyhedra, two modes are necessary to accomplish the conformational transition. In addition, we extend our study to viral capsids with other T numbers, and discuss the similarities and differences in the features of virus capsid conformational dynamics. We note that the pentamers generally have higher flexibility and propensity to move freely from the other capsomers, which facilitates the shape adaptation that may be important in the viral life cycle.  相似文献   

20.
Song G  Jernigan RL 《Proteins》2006,63(1):197-209
Domain swapping is a process where two (or more) protein molecules form a dimer (or higher oligomer) by exchanging an identical domain. In this article, based on the observation that domains are rigid and hinge loops are highly flexible, we propose a new Elastic Network Model, domain-ENM, for domain-swapped proteins. In this model, the rigidity of domains is taken into account by using a larger spring constant for intradomain contacts. The large-scale transition of domain swapping is then novelly decomposed into the relative motion between the rigid domains (only 6 degrees of freedom) plus the internal fluctuations of each domain. Consequently, this approach has the potential to produce much more meaningful transition pathways than other simulation approaches that try to find pathways in a search space of large numbers of dimensions. In this article, we also propose a new way to define the overlap measure. Past approaches used an inappropriate comparison of the large-scale conformation displacement against the computed infinitesimal motions of modes. Here, we propose an infinitesimal version of the large-scale conformation change and then compare it with the modes of motions. As a result, we obtain much better overlap values. Using this new overlap definition, we are also able for the first time to give a clear, intuitive explanation why "open" forms tend to produce better overlap values than "closed" forms with traditional ENMs. Finally, as an application, we present a simple approach to show how domain-ENM can be used to generated transition pathways for domain-swapped proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号