首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lixia Zhao  Dan Wang  Gen Shi  Ling Lin 《Luminescence》2017,32(8):1547-1553
The specificity for early diagnostic of prostate‐specific antigen (PSA) is low because the current technology mostly allows the detection of only one biomarker at one time. In this work, a dual‐labeled chemiluminescence enzyme immunoassay (CLEIA) for simultaneous measurement of total PSA (TPSA) and free PSA (FPSA) was proposed. Anti‐PSA McAb (Mab1) was immobilized on a microplate as the solid phase, horseradish peroxidase (HRP)‐labeled anti‐TPSA monoclonal antibody (McAb2) and alkaline phosphatase (ALP)‐labeled anti‐FPSA McAb3 were used as detection antibodies. Two chemiluminescence reactions of HRP with luminol and ALP with 4‐methoxy‐4‐(3‐phosphate‐phenyl)‐spiro‐(1,2‐dioxetane‐3,2′‐adamantane) (AMPPD) were used as the signal detecting system. Based on a sandwich model, the amount of FPSA and TPSA could be determined simultaneously. The effects of several physico‐chemical parameters were studied and optimized. Cross‐reactivities of six common tumor markers in serum were studied. The proposed method presented the sensitivity of 0.03 ng ml?1 and 0.05 ng ml?1 for FPSA and TPSA respectively, with low cross‐reactivities. Compared with the results from commercial chemiluminescent kits there was good correlation, indicating that this established method could be used to simultaneously to measure the concentrations of FPSA and TPSA in one serum sample and also could greatly facilitate the early diagnosis for PCa in clinical practice.  相似文献   

2.
8‐Amino‐5‐chloro‐7‐phenylpyrido[3,4‐d]pyridazine‐1,4(2H,3H)dione (L‐012) was recently synthesized as a new chemiluminescence (CL) probe; the light intensity and the sensitivity of L‐012 are higher than those of other CL probes such as luminol. Previously, our group developed four lophine‐based CL enhancers of the horseradish peroxidase (HRP)‐catalyzed CL oxidation of luminol, namely 2‐(4‐hydroxyphenyl)‐4,5‐diphenylimidazole (HDI), 2‐(4‐hydroxyphenyl)‐4,5‐di(2‐pyridyl)imidazole (HPI), 4‐(4,5‐diphenyl‐1H‐imidazol‐2‐yl)phenylboronic acid (DPA), and 4‐[4,5‐di(2‐pyridyl)‐1H‐imidazol‐2‐yl]phenylboronic acid (DPPA), and showed that DPPA was suitable for the photographic detection of HRP. In this study, we replaced luminol with L‐012 and evaluated these as L‐012‐dependent CL enhancers. In addition, to detect HRP and/or H2O2 with higher sensitivity, each detection condition for the L‐012–HRP–H2O2 enhanced CL was optimized. All the derivatives enhanced the L‐012‐dependent CL as well as luminol CL; HPI generated the highest enhanced luminescence. Under optimized conditions for HRP detection, the detection limit of HRP was 0.08 fmol. By contrast, the detection limit of HRP with the enhanced L‐012‐dependent CL using 4‐iodophenol, which is a common enhancer of luminol CL, was 1.1 fmol. With regard to H2O2 detection, the detection limits for enhanced CL with HPI and 4‐iodophenol were 0.29 and 1.5 pmol, respectively. Therefore, it is demonstrated that HPI is the most superior L‐012‐dependent CL enhancer. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Some N-alkyl phenothiazines with different ionic groups were studied as enhancers of chemiluminescence catalyzed by soybean peroxidase. It was shown that under experimental conditions, the compounds with positively charged groups do not exhibit enhancing ability, while the addition of phenothiazines with negatively charged groups to a substrate mixture significantly increased the chemiluminescence intensity. The relationship between the enhancing activity of phenothiazines and their capacity for enzymatic oxidation by hydrogen peroxide was found. The enhancers discovered new opportunities for increasing the sensitivity of determination of analytes by chemiluminescent enzyme immunoassay.  相似文献   

4.
《Luminescence》2003,18(1):31-36
Enhanced chemiluminescence (ECL) describes the phenomenon of increased light output in the luminol oxidation reaction catalysed by horseradish peroxidase (HRP) in the presence of certain compounds, such as para‐iodophenol. In this work, the effects of phenol on the para‐iodophenol‐enhanced HRP‐catalysed chemiluninescent reaction intensity in an aqueous buffer (Tris–HCl buffer, pH 8.5) and in a surfactant–water–octane mixture were compared. Preincubation of HRP at low phenol concentrations stimulated the chemiluminescent intensity in the assay performed in an aqueous buffer, but did not have significant effect in the sodium bis(2‐ethylhexyl)sulphosuccinate) (Aerosol OT, AOT) applied system. It was also observed that HRP preincubation with phenol concentration higher than 0.003 mg/mL produced an inhibitory effect on the enzyme activity for both assay systems. Only an inhibitory effect of phenol on the chemiluminescent intensity in the surfactant system in octane (as organic solvent) was observed. Three assays were developed to determine phenol concentration in water and in an organic solvent mixture. The detection limits were 0.006, 0.003 and 0.0005 mg/mL, respectively, for the buffer‐containing system, the AOT‐applied system with phenol standard solutions in water and for the AOT‐applied system with phenol standard solutions in octane. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A chemiluminescent enzyme immunoassay (CLEIA) was compared to an ultraperformance liquid chromatography tandem mass spectroscopy (UPLC‐MS/MS) procedure for the analysis of zeranol and its metabolites in bovine tissue samples. Apparent recoveries from fortified samples by both methods were comparable at 0.5–4.0 µg/kg and a significant correlation was obtained. For CLEIA analysis, hapten mimicking the analyte was first synthesized and conjugated with the carrier protein bovine serum albumin as the immunogen to produce monoclonal antibody. The obtained antibody showed extensive cross‐reactivity toward zeranol metabolites (zearalanone). The limit of detection of CLEIA and UPLC‐MS/MS was 0.05 µg/kg and 0.5 µg/kg, respectively. Recoveries of both methods for fortified samples were higher than 75.0% with the coefficient of variation less than 15%. These results indicated that the combination of screening with CLEIA and confirmation with UPLC‐MS/MS for zeranol and its metabolites would be a reliable method for a large number of bovine samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
《Luminescence》2003,18(2):72-78
We developed a competitive chemiluminescent (CL) enzyme immunoassay for rapid, sensitive analysis of 19‐nortestosterone (19‐NT) in bovine urine. Anti‐19‐NT polyclonal antibodies were raised in rabbits using a 19‐NT‐hemisuccinate derivative conjugated with ovalbumin; the derivative was also conjugated with horseradish peroxidase (HRP) as a label. Antibodies were immobilized on 384‐well black polystyrene microtitre plates and HRP‐labelled 19‐NT activity was measured using an efficient chemiluminescent substrate (SuperSignal® ELISA Femto) after 3 min incubation. Emitted light was recorded using a conventional, photomultiplier‐tube‐based microtitre plate reader or a sensitive back‐illuminated, cooled CCD camera. The developed method fulfils all the requirements of precision (intra‐ and inter‐assay CV < 10%) and accuracy (mean recovery 94–112%), with a detection limit of 0.03 ppb (1.1 × 10?9 mol/L) in a urine matrix. Chemiluminescence enhances detectability of the HRP‐labelled tracer (thus lowering the limit of detection with respect to colorimetry) and reduces analysis time. The 384‐well microtitre plate cuts the sample/reagent volume (20 µL), a five‐fold reduction with respect to the conventional 96‐well microtitre plate. The developed method is suitable for high‐throughput screening of 19‐NT in urine samples, with reduced costs as compared with conventional colorimetric enzyme immunoassays. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Commercial chemiluminescent reagents emit across a broad portion of the electromagnetic spectrum (400–500 nm). A challenge to the use of chemiluminescence to monitor biological processes is the presence of interfering substances in the biological optical window. In the present study, longer wavelength emitting fluorophores (the organic dyes Alexa 568 and Alexa 647), and a semiconductor nanoparticle (QDOT800) were used to red‐shift the emission from commercially available 1,2‐dioxetane‐based chemiluminescent substrate reactions. By adding non‐conjugated fluorescent emitters into chemiluminescent reaction mixtures, an emission peak occurred at the predicted wavelength of the fluorescent emitter. The excitation and emission from QDOT800 was preserved in the presence of a 100 µm‐thick glass barrier separating it from the chemiluminescent reaction components. The maximum tissue phantom penetration by QDOT800 emission was 8.5 mm; in comparison, the native chemiluminescent emission at 500 nm was unable to penetrate the thinnest tissue phantom of 2.5 mm. The described method for red‐shifted emissions from chemiluminescent reactions does not require direct interaction between the chemiluminescent reaction and the fluorescent emitters. This suggests that the mechanism of chemiluminescent excitation of fluorophores and QDOT800 is not exclusive to chemiluminescence resonance energy transfer or sensitized chemiluminescence, but rather by broad energization from the native chemiluminescent emission. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
9.
A non‐competitive immunoassay based on capillary electrophoresis (CE) with chemiluminescence (CL) detection has been developed for the determination of luteinizing hormone (LH) in human serum. The work involved the development of separation and CL conditions, allowing for routine analysis of serum samples. In this study, horseradish peroxidase (HRP)‐labelled monoclonal anti‐LH can catalyse the luminol–hydrogen peroxide reaction. The determined LH can react with excessive amount of HRP‐labelled anti‐LH. Within 14 min, free enzyme conjugate and immune complex could be separated in alkaline borate buffer by means of a high voltage (15 kV). To improve sensitivity, a series of measures were adopted, including the choice of para‐iodophenol as a CL enhancer, unique design in detect window. Under the optimal conditions, the calibration curve for LH was established in the concentration range 1–200 mIU/mL and the detection limit was 0.08 mIU/mL. Compared with ELISA, this method decreased the detection limit by about 12 times, and it has been successfully employed in the determination of LH in human serum. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The chemiluminescent reaction of lucigenin with various reducing sugars and reducing compounds has been studied. It was found that dihydroxyacetone gave the most intense chemiluminescence (CL). We have developed highly sensitive chemiluminescent methods for alkaline phosphatase (ALP) based on the production of dihydroxyacetone using NADP+ or glycerol-3-phosphate as substrate. The detection limits for ALP using each substrate were 1.25 × 10?19 mol/assay and 2.5 × 10?19 mol/assay, and the coefficient of variation (n = 7) was 2.8% and 3.7%, respectively. We have also applied the method using NADP+ as substrate in enzyme immunoassays (EIA) for cholecystokinin (CCK) and human chorionic gonadotropin (hCG). CCK-8 (octapeptide sulphated form of a carboxy terminal fragment of CCK) concentrations released from alimentary canal of rat were assayed using the chemiluminescent EIA (CLEIA) and a fluorimtric EIA (ALP label). The correlation between CCK-8 values obtained by these methods was y = 1.04x + 18.21, r = 0.946, n = 28. hCG values in serum and in urine were measured. The correlation between hCG values in serum samples obtained using the CLEIA and a time-resolved fluoroimmunoassay (TR-FIA), and in urine samples obtained using the CLEIA and the fluorimetric EIA using ALP were satisfactory. The correlations were y = 1.00x ? 0.04, r = 0.997 (n = 51) and y = 1.00x ? 0.03, r = 0.999 (n = 10), respectively.  相似文献   

11.
The properties of a peroxidase from Arthromyces ramosus (ARP) in the chemiluminescent reaction of luminol oxidation have been studied. These were compared with the properties of horse radish peroxidase (HRP) in the cooxidation of luminol and p-iodophenol, the enhanced chemiluminescence (ECL) reaction. By means of the stop-flow technique, ARP was shown to have an enzymatic activity toward luminol higher than that toward HRP. ARP can efficiently catalyze luminol oxidation in the absence of substrate enhancer. pH and substrate concentrations were optimized to determine ARP with the highest sensitivity. The detection limit of ARP was 5 x 10(-13) M, the same as that for HRP in the ECL reaction. The data on the use of ARP as a label in enzyme immunoassay of human IgG are presented. ARP was shown to have all the advantages of HRP as a label in chemiluminescent enzyme immunoassays: (i) high signal intensity, (ii) slow decay of luminescence, (iii) high signal/noise ratio, and (iv) as a consequence of (i)-(iii), high detection sensitivity. However, the low thermostability of ARP can limit the potential fields of its application.  相似文献   

12.
We developed a novel chemiluminescent assay of β-D -galactosidase (β-gal) based on the chemiluminescence of indole. 5-Bromo-4-chloro-3-indolyl-β-D -galactopyranoside (X-gal) was used as a substrate for β-gal and also as a light emitter. X-gal was hydrolysed by β-gal to liberate free indoxyl, followed by oxidation to indigo dye, and simultaneously produces hydrogen peroxide (H2O2). H2O2 reacts with the residual X-gal in the presence of horseradish peroxidase (HRP) to emit light. The measurable range of β-gal obtained by this method was 6 × 10−14 mol/L to 6 × 10−11 mol/L; the detection limit was 3 amol/assay. This chemiluminescent assay could be applied to an enzyme immunoassay of thyroxine using β-gal as the enzyme label. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
A high‐throughput and simple chemiluminescence (CL) enzyme immunoassay (CLEIA) for the determination of progesterone (P) in human serum was developed, with the highly sensitive 4‐methoxy‐4‐(3‐phosphatephenyl)‐spiro‐(1,2‐dioxetane‐3,2′‐adamantane) (AMPPD)–alkaline phosphatase (ALP) system as the CL detection system. The results showed that the indirect immobilization of rabbit anti‐progesterone polyclonal antibody (RAPA) through secondary antibody exhibited apparent advantages over direct coating in terms of antibody saving and improvement of the coating stability and uniformity. The direct analysis of P in human serum without extraction was realized by using 8‐anilino‐1‐naphthalenesulphonic acid (ANS) to displace P from its binding proteins. The effect of several relevant parameters of the immunoreaction were examined and optimized. Compared with some commercial progesterone kits, the presented CLEIA has higher sensitivity with detection limitation as low as 0.06 ng/mL. The recoveries were 95.9–101%. The coefficient of variation was <8.4% and 9.9% for intra‐ and inter‐assay precision, respectively. This method has been successfully applied to the evaluation of P in human serum. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Horseradish peroxidase (HRP) catalyzes the oxidative chemiluminescent reaction of luminol, and firefly luciferase catalyzes the oxidation of firefly D-luciferin. Here we report a novel substrate, 5-(5'-azoluciferinyl)-2,3-dihydro-1,4-phthalazinedione (ALPDO), that can trigger the activity of HRP and firefly luciferase in solution because it contains both luminol and luciferin functionalities. It is synthesized by diazotization of luminol and its subsequent azo coupling with firefly luciferin. NMR spectral data show that the C5' of benzothiazole in luciferin connects the diazophthalahydrazide. The electronic absorption and fluorescence properties of ALPDO are different from those of its precursor molecules. The chemiluminescence emission spectra of the conjugate substrate display biphotonic emission characteristic of azophthalatedianion and oxyluciferin. It has an optimum pH of 8.0 for maximum activity with respect to HRP as well as luciferase. At pH 8.0 the bifunctional substrate has 12 times the activity of luminol but has 7 times less activity than the firefly luciferin-luciferase system. The specific enhancement of light emission from the cyclic hydrazide part of ALPDO helped in the sensitive assay of HRP down to 2.0 x 10(-13) M and of ATP to 1.0 x 10(-14) mol. Addition of enhancers such as firefly luciferin and p-iodophenol (PIP) to the HRP-ALPDO-H2O2 system enhanced the light output.  相似文献   

15.
N‐Acetyl‐L‐cysteine (NAC) can inhibit the luminol–H2O2, reaction, which is catalyzed by silver nanoparticles. Based on this phenomenon a new method was developed for NAC determination. Under optimum conditions, a linear relationship between chemiluminescence intensity and NAC concentration was found in the range 0.034–0.98 µg/mL. The detection limit was 0.010 µg/mL (S/N =3), and the relative standard deviation (RSD) was <5% for 0.480 µg/mL NAC (n =5). This simple, sensitive and inexpensive method has been applied to measure the concentration of NAC in pharmaceutical tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Alkaline phosphatase and horseradish peroxidase are the most commonly used reporter systems in chemiluminescent enzyme immunoassay (CLEIA). Which one, therefore, would be better when establishing a CLEIA method for a new target substance? There was no standard answer. In this study, both reporters were compared systematically including luminescence kinetics, conjugation methods, optimal condition and detection performance, using two common drugs, SD‐methoxy‐pyrimidine and enrofloxacin, as determination objects. The results revealed that there was much difference between the luminescence kinetics of the two systems. However, there was little difference between these systems when detecting the same substance, including in optimal conditions and determination of performance. Both reporters were suitable for establishing chemiluminescent enzyme immunoassays. Therefore, the choice of alkaline phosphatase or horseradish peroxidase as the reporter system in chemiluminescent enzyme immunoassays depends on availability. Conversely, these two report systems could be applied in simultaneous analysis of multicomponents due to their different optical behaviors and similar performances. But attention should be paid to conjugation method and coating buffer, which affected the luminescent intensity of different determination targets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
Aims: To evaluate the potential for using a novel chemiluminescence‐based enzyme assay for rapid detection of enterococci in water contaminated with faecal waste. Methods and Results: The novel assay (EntLight) was based on the enzymatic hydrolysis of the chemiluminescent 1,2‐dioxetane [(4‐methoxy‐4(3‐β‐d ‐glucoside‐4‐chlorophenyl)]spiro[1,2‐dioxetane‐3‐1,3‐tricyclo[7·3·1·02,7]tridec‐2,7‐ene] specific for β‐d ‐glucosidase. The specificity of the proposed EntLight assay was characterized using 26 different Enterococcus strains and 10 bacterial genera other than Enterococcus. With an analysis time of ≤8 h, the assay was found to be sensitive and specific. Validation experiments were carried out using water samples contaminated with raw municipal wastewater in comparison with qPCR and ISO standard methods. EntLight was successfully applied to detect enterococci in contaminated water within ≤8 h, and the proposed assay correlated well with both qPCR and ISO standard methods (R2 > 0·776). Conclusions: EntLight can be applied to rapid and simple detection of viable enterococci in water contaminated with faecal matter. Significance and Impact of the Study: The novel EntLight assay and qPCR have the potential to be used as methods for early warning (1–7 h) of faecal pollutions in different water types.  相似文献   

18.
The effects of various boronate compounds, 4-biphenylboronic acid, 4-bromobenzeneboronic acid, trans-4-(3-propionic acid)phenylboronic acid and 4-iodophenylboronic acid, on the horseradish peroxidase (HRP) catalysed chemiluminescent oxidation of pyrogallol and purpurogallin by peroxide were investigated. trans-4-(3-Propionic acid)phenylboronic acid produced a 13.7-fold enhancement in the peak light emission from the chemiluminescent HRP catalysed pyrogallol reaction (detection limit for HRP < 1.25 fmol). At low enhancer concentration a single peak of light emission was observed and as the enhancer concentration increased the time to peak light emission became progressively longer. The chemiluminescence showed two peaks at higher concentrations (> 54.3 μmol/L) and the individual peak times depended upon the concentration of the enhancer. All of the boronates enhanced peak light emission in the chemiluminescent HRP catalysed purpurogallin reaction. 4-Biphenylboronic acid was the most effective and it enhanced peak light emission 314-fold. The practical detection limit for HRP (Type VIA) using this enhancer was 4.18 pmol (peak emission at 20 minutes). This compound also enhanced peak light emission 232-fold from a chemiluminescent HRP-purpurogallin reaction in which molecular oxygen replaced peroxide as the oxidant.  相似文献   

19.
We developed a highly sensitive chemiluminescent (CL) assay for hydrogen peroxide using 10‐methyl‐9‐(phenoxycarbonyl) acridinium fluorosulfonate (PMAC) that produced chemiluminescence under neutral conditions and applied it to an enzyme immunoassay (EIA). One picomole of hydrogen peroxide could be detected using the optimized PMAC‐CL method and 6.2 × 10‐20 mol β‐d ‐galactosidase (β‐gal) could be detected by combining an indoxyl derivative substrate and the proposed PMAC‐CL method. This highly sensitive CL β‐gal assay was applied to an EIA for thyroid‐stimulating hormone (TSH) using β‐gal as a label enzyme; 0.02–100.0 μU/mL TSH in human serum could be assayed directly and with high reproducibility. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A new chemiluminescence (CL) reaction was observed when chloramphenicol solution was injected into the mixture after the end of the reaction of alkaline luminol and sodium periodate or sodium periodate was injected into the reaction mixture of chloramphenicol and alkaline luminol. This reaction is described as an order‐transform second‐chemiluminescence (OTSCL) reaction. The OTSCL method combined with a flow‐injection technique was applied to the determination of chloramphenicol. The optimum conditions for the order‐transform second‐chemiluminescence emission were investigated. A mechanism for OTSCL has been proposed on the basis of the chemiluminescence kinetic characteristics, the UV‐visible spectra and the chemiluminescent spectra. Under optimal experimental conditions, the CL response is proportional to the concentration of chloramphenicol over the range 5.0 × 10?7–5.0 × 10?5 mol/L with a correlation coefficient of 0.9969 and a detection limit of 6.0 × 10?8 mol/L (3σ). The relative standard deviation (RSD) for 11 repeated determinations of 5.0 × 10?6 mol/L chloramphenicol is 1.7%. The method has been applied to the determination of chloramphenicol in pharmaceutical samples with satisfactory results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号