首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive and rapid HPLC method with fluorescence detection for the determination of dimethyl‐4,4′‐dimethoxy‐5,6,5′,6′‐dimethylene dioxybiphenyl‐2,2′‐dicarboxylate (DDB) in the raw material and pill form was developed. Liquid chromatography was performed on a C18 column (250 × 4.6 mm i.d., 5 µm particle size), the mobile phase consisted of methanol and 0.05 M sodium dihydrogen phosphate buffer (80 : 20, v/v), and the apparent pH of the mobile phase was adjusted to 3. The fluorescence detector was operated at excitation/emission wavelengths of 275/400 nm. The proposed method allows the determination of DDB within concentration range 0.1–1.5 µg/mL with a limit of detection of 0.032 µg/mL, a limit of quantification of 0.097 µg/mL and a correlation coefficient of 0.9997. The proposed method has been successfully applied for the analysis of DDB in its pills with a percentage recovery of 98.45 ± 0.32. The method was fully validated according to ICH guidelines. Moreover, the high sensitivity of the method permits its use in an in vitro dissolution test for DDB under simulated intestinal conditions. In addition, the proposed method was extended to a content uniformity test according to USP guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, sensitive and rapid spectrofluorimetric method was developed for the determination of esomeprazole (EMZ) and pantoprazole (PRZ) in their pharmaceutical formulations and human plasma. The proposed method is based on the fluorescence spectral behavior of EMZ in methanol in the presence of 0.1 m NaOH containing 0.5% methyl cellulose (MC) at 306/345 nm. The fluorescence intensity of EMZ was enhanced about 1.3‐fold and good linearity in the range 0.4–4.0 µg/mL with a lower detection limit of 0.04 µg/mL and lower quantification limit of 0.14 µg/mL. For PRZ, its methanolic solution exhibited marked native fluorescence at 290/325 nm after enhancement (about 2.1‐ or 1.4‐fold) using either 0.025% sodium dodecyl sulfate (SDS) or 0.05% MC in the presence of 0.2 m borate buffer of pH 9.5. The fluorescence–concentration plots of PRZ were rectilinear over the ranges 0.2–2.0 and 0.3–3.0 µg/mL with lower detection limits of 0.02 and 0.03 µg/mL and lower quantification limits of 0.07 and 0.09 µg/mL using sodium dodecyl sulfate and MC, respectively. The method was successfully applied to the analysis of EMZ and PRZ in their commercial dosage forms and the results were in good agreement with those obtained with the comparison method. Furthermore, in a preliminary investigation, the proposed method was extended to the in vitro determination of the two drugs in spiked human plasma and the results were satisfactory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Two simple, rapid and sensitive methods, namely, fourth‐derivative synchronous spectrofluorimetry (method I) and HPLC with fluorescence detection (method II) were developed for the simultaneous analysis of a binary mixture of itopride HCl (ITP) and domperidone (DOM) without prior separation. The first method was based on measuring the fourth derivative of the synchronous fluorescence spectra of the two drugs at Δλ = 40 nm in methanol. The different experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully optimized. Chromatographic separation was performed in < 6.0 min using a RP C18 column (250 mm × 4.6 mm i.d., 5 µm particle size) with fluorescence detection at 344 nm after excitation at 285 nm. A mobile phase composed of a mixture of 0.02 M phosphate buffer with acetonitrile in a ratio of 55 : 45, pH 4.5, was used at a flow rate of 1 mL/min. Linearity ranges were found to be 0.1–2 µg/mL for ITP in both methods, whereas those for DOM were found to be 0.08–2 and 0.05–1.5 µg/mL in methods I and II, respectively. The proposed methods were successfully applied for the determination of the studied drugs in synthetic mixtures and laboratory‐prepared tablets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A high‐performance liquid chromatographic method with fluorescence detection was developed and validated for the determination of gemifloxacin in human breast milk. The proposed method allows the determination of gemifloxacin in breast milk samples without complex sample preparation. The samples were mixed with a mobile phase and filtered with a 0.45 µm polytetrafluoroethylene filter before analysis. Chromatographic separation was carried out on a C18 column (150 × 4.6 mm, 5 µm I.D.) using methanol:50 mM ortho‐phosphoric acid solution (40:60) as the mobile phase with a 1.0 mL/min flow rate. Quantitation was performed using fluorescence detection with an excitation wavelength at 272 nm and an emission wavelength at 395 nm. The linear range was found to be 0.1–2.5 µg/mL. The method was applied successfully for the determination of gemifloxacin in breast milk obtained from a breastfeeding mother after oral administration of a single tablet that included 320 mg gemifloxacin per gemifloxacin tablet. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and rapid liquid chromatographic method was developed and validated for the determination of triclabendazole with high accuracy and precision within 6 min. Good chromatographic separation was achieved using a CLC Shim‐pack C8 (250 × 4.6 mm, 5 µm particle size) using the mobile phase containing a mixture of 0.02 m phosphate buffer and methanol with a ratio of (20 : 80 v/v) at pH 4.0 was pumped at a flow rate of 1.2 mL/min with fluorescence detection for the first time at 338 nm after excitation at 298 nm. Losartan potassium was used as an internal standard. The method showed good linearity in the ranges of 0.05–2.0 µg/mL with limits of detection and quantification of 14.1 and 42.6 ng/mL, respectively. The suggested method was successfully applied for the analysis of triclabendazole in tablets. The high sensitivity of the method enabled the determination of the studied drug in spiked human plasma with mean percentage of recoveries of 99.79 ± 5.09. Statistical evaluation of the data was performed according to ICH Guidelines. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In pH 5.0–5.4 HAc–NaAc buffer solution, lincomycin (Linco) reacted with Pd(II) to form 1:1 cationic chelate, which could further react with erythrosine (Ery) to form 1:1 ion‐association complexes (Pd–Linco)Ery. As a result, not only were the absorption and fluorescence spectra changed, but also the resonance Rayleigh scattering (RRS) intensity was greatly enhanced. These phenomena offered useful means for the determination of Linco by spectrophotometry, fluorescence and RRS methods. The linear range and detection limit of Linco were 0.20–3.00 µg/mL and 0.057 µg/mL, 0.20–4.80 µg/mL and 0.061 µg/mL, 0.05–2.70 µg/mL and 0.015 µg/mL for the spectrophotometric, fluorescence quenching and RRS methods, respectively. Among these, the RRS method obtained the highest sensitivity. Therefore, the optimum reaction conditions and the influences of coexisting substances were investigated using the RRS method. A simple, sensitive and rapid method has been developed for the determination of Linco in either the pharmaceutical form or human body fluids, and the reasons for RRS enhancement are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Aliskiren hemifumarate (ALS) and amlodipine besylate (AML) were simultaneously determined by two different spectrofluorimetric techniques. The first technique depends on direct measurement of the steady‐state fluorescence intensities of ALS and AML at 313 nm and 452 nm upon excitation at 290 and 375 nm, respectively, in a solvent composed of methanol and water (10: 90, v/v) . The second technique utilizes synchronous fluorimetric quantitative screening of the emission spectra of ALS and AML at 272 and 366 nm, respectively using Δλ of 97 nm. Effects of different solvents and surfactants on relative fluorescence intensity were studied. The method was validated according to ICH guidelines. Linearity, accuracy and precision were found to be satisfactory in both techniques over the concentration ranges of 1–15 and 0.4–4 µg/mL for ALS and AML, respectively. In the first technique, limit of detection and limit of quantification were estimated and found to be 0.256 and 0.776 µg/mL for ALS as well as 0.067 and 0.204 µg/mL for AML, respectively. Also, limit of detection and limit of quantification were calculated in the synchronous method and found to be 0.293 and 0.887 µg/mL for ALS as well as 0.034 and 0.103 µg/mL for AML, respectively. The methods were successfully applied for the determination of the two drugs in their co‐formulated tablets. The results were compared statistically with reference methods and no significant difference was found. The developed methods are rapid, sensitive, inexpensive and accurate for the quality control and routine analysis of the cited drugs in bulk and in pharmaceutical preparations without pre‐separation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A new simple, rapid and sensitive reversed‐phase liquid chromatographic method was developed and validated for the simultaneous determination of methocarbamol (MET) and aspirin (ASP) in their combined dosage form. The separation of these compounds was achieved within 6.0 min on a CLC Shim‐pack C8 column (250 × 4.6 mm, 5 µm particle size) using isocratic mobile phase consisting of acetonitrile and 0.02 M dihydrogenphosphate buffer (30:70, v/v) at pH = 5.0. The analysis was performed at a flow rate of 1.0 mL/min with fluorescence detection at 277/313 nm for MET and 298/410 nm for ASP using real‐time programming. The selectivity, linearity of calibration, accuracy, inter‐ and intra‐day precision and recovery were examined as parts of the method validation. The concentration–response relationship was linear over concentration ranges of 0.02‐0.20 and 0.02‐0.40 µg/mL for MET and ASP, respectively, with a limit of detection of 6 and 32 ng/mL for MET and ASP, respectively. The proposed method was successfully applied for the analysis of both MET and ASP in prepared tablets with average recoveries of 99.88 ± 0.65% for MET and 100.44 ± 0.78% for ASP. The results were favourably compared to those obtained by a reference method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4‐chloro‐(2′‐hydroxylophenylazo)rhodanine–Ti(IV) [ClHARP–Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2‐ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and γ‐globin (γ‐G) were studied. The detection limits were 0.182 µg/mL for BSA, 0.0788 µg/mL for HSA, 0.216 µg/mL for Ova and 0.484 µg/mL for γ‐G. The linear ranges of the calibration were 0–12.0, 0–10.0, 0–18.0 and 0–18.0 µg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A novel, sensitive and rapid CL method coupled with high‐performance liquid chromatography separation for the determination of carbamazepine is described. The method was based on the fact that carbamazepine could significantly enhance the chemiluminescence of the reaction of cerium sulfate and tris(2,2‐bipyridyl) ruthenium(II) in the presence of acid. The chromatographic separation was performed on a Kromasil® (Sigma‐Aldrich) TM RP‐C18 column (id: 150 mm × 4.6 mm, particle size: 5 µm, pore size: 100 Å) with a mobile phase consisting of methanol–water‐glacial acetic acid (70:29:1, v/v/v) at a flowrate of 1.0 mL/min, the total analysis time was within 650 s. Under optimal conditions, CL intensity was linear for carbamazepine in the range 2.0 × 10?8 ~ 4.0 × 10?5 g/mL, with a detection limit of 6.0 × 10?9 g/mL (S/N = 3) and the relative standard detection was 2.5% for 2.0 × 10?6 g/mL (n = 11). This method was successfully applied to the analysis of carbamazepine in human urine and serum samples. The possible mechanism of the CL reaction is also discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
8‐Prenylnaringenin (8PN) is a naturally occurring bioactive chiral prenylflavonoid found most commonly in the female flowers of hops (Humulus lupulus L.). A stereospecific method of analysis for 8PN in biological fluids is necessary to study the pharmacokinetic disposition of each enantiomer. A novel and simple liquid chromatographic‐electrospray ionization‐mass spectrometry (LC‐ESI‐MS) method was developed for the simultaneous determination of R‐ and S‐8PN in rat serum and urine. Carbamazepine was used as the internal standard (IS). Enantiomeric resolution of 8PN was achieved on a Chiralpak® AD‐RH column with an isocratic mobile phase consisting of 2‐propanol and 10 mM ammonium formate (pH 8.5) (40:60, v/v) and a flow rate of 0.7 mL/min. Detection was achieved using negative selective ion monitoring (SIM) of 8PN at m/z 339.15 for both enantiomers and positive SIM m/z at 237.15 for the IS. The calibration curves for urine were linear over a range of 0.01–75 µg/mL and 0.05–75 µg/mL for serum with a limit of quantification of 0.05 µg/mL in serum and 0.01 µg/mL in urine. The method was successfully validated showing that it was sensitive, reproducible, and accurate for enantiospecific quantification of 8PN in biological matrices. The assay was successfully applied to a preliminary study of 8PN enantiomers in rat. Chirality 26:419–426, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Introduction – Mullein (Verbascum) flowers are highly valued herbal drugs used in the treatment of inflammation, asthma, spasmodic coughs and other respiratory tract diseases. Their phenolic constituents are considered to be responsible for the anti‐inflammatory and antimicrobial activity of the herb. However, knowledge about the contents of phenolics in flowers is limited and no HPLC method for their analysis is available. Objective – To develop and validate an RP‐HPLC‐UV method for the simultaneous determination of eight flavonoids and two phenylethanoids in the flowers of Verbascum densiflorum and V. phlomoides. Methodology – HPLC separation was accomplished on a C18 Lichrosphere 100 column (5 µm, 250 mm × 4.6 mm, i.d.) with an acetonitrile gradient elution using aqueous 0.5% (w/v) orthophosphoric acid solution containing 1% (v/v) tetrahydrofurane. Results – All the calibration curves showed good linear correlation coefficients (r > 0.997) over the wide test ranges. The relative standard deviation of the method was less than 3.4% for intra‐ and inter‐day assays, and the average recoveries were between 93.5 and 101.9%. High sensitivity was demonstrated with detection limits of 0.062–0.083 µg/mL for flavonoid aglycones, 0.156–0.336 µg/mL for flavonoid glycosides and 0.390–0.555 µg/mL for phenylethanoids. The flower samples of V. phlomoides were found to contain high levels of diosmin and tamarixetin 7‐rutinoside (2.327–2.392% of dry weight), whereas verbascoside (0.688–0.742% of dry weight) and luteolin 7‐glucoside (0.204–0.279% of dry weight) dominated in the V. densiflorum flower. Conclusion – The HPLC method established is appropriate for the quality assurance and the differentiation of V. phlomoides and V. densiflorum samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In weak acidic medium, the anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) bind with halofluorescein dyes, such as erythrosin (Ery), eosin Y (EY) and eosin B (EB), to form ion‐association complexes, which causes fluorescence quenching of halofluorescein dyes. The quenching values (ΔF) are directly in proportional to the concentrations of bleomycins over the range 0.09–2.5 µg/mL. Based on this, a fluorescence quenching method for the determination of BLMA5 and BLMA2 has been developed. The dynamic range is 0.12–2.5 µg/mL for the determination of BLMA5 and 0.09–2.0 µg/mL for BLMA2, with detection limits (3σ) of 0.04 µg/mL for BLMA5, 0.03 µg/mL for BLMA2, respectively. It has been applied to determine the two antibiotics in human serum, urine and rabbit serum samples. The recovery is in the range 90–102%. In this work, the optimum reaction conditions and the spectral characteristics of the fluorescence are investigated. The reasons for fluorescence quenching are discussed, based on the fluorescence theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of amisulpride (AMS) and bumidazone (BUM) in tablet form. The proposed method is based on measuring the native fluorescence of the studied drugs in methanol at 360 and 344 nm after excitation at 276 and 232 nm for AMS and BUM, respectively. The fluorescence–concentration plots were rectilinear over the ranges of 5.0–60.0 ng/mL for AMS and 0.5–5.0 µg/mL for BUM. The lower detection limits were 0.70 ng/mL and 0.06 µg/mL, and the lower quantification limits were 2.0 ng/mL and 0.18 µg/mL for AMS and BUM, respectively. The method was successfully applied for the analysis of AMS and BUM in commercial tablets. Statistical evaluation and comparison of the data obtained using the proposed and comparison methods revealed good accuracy and precision for the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A flow injection chemiluminescence method is described for the determination of subnanomolar concentrations of vanadium in environmental water samples. The procedure is based on the oxidation of luminol in the presence of dissolved oxygen catalyzed by vanadium(IV). Vanadium(V) reduction and preconcentration of vanadium(IV) was carried out using in‐line silver reductor and 8‐hydroxyquinoline chelating columns at pH 3.15, respectively. The calibration graph for vanadium(IV) was linear in the concentration range of 0.025–10 µg/L with relative standard deviation in the range of 0.4–5.58%. The detection limit (3s blank) was 3.8 × 10?3 µg/L without preconcentration; when the vanadium(IV) was preconcentrated with an 8‐HQ column for 1 min (2.0 mL of sample loaded), the detection limit of 5.1 × 10?4 µg/L was achieved. One analytical cycle can be completed in 2.0 min. The analysis of certified reference materials (CASS‐4, NASS‐5 and SLRS‐4) by the proposed method showed good agreement with the certified values. The method was successfully applied to the determination of total dissolved vanadium in environmental water samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A new, specific and sensitive reversed‐phase high‐performance liquid chromatography method was developed for the simultaneous determination of metolazone (MET) and losartan potassium (LOS). Good chromatographic separation was achieved within 6.0 min on a 150 × 4.6 mm i.d., 5 µm Waters, Ireland and ProDIGY 5 ODS 3 100 A column. A mobile phase containing a mixture of methanol and 0.02 M phosphate buffer (65:35, v/v) at pH 3.0 was used. The analysis was performed at a flow rate of 1 mL/min with fluorescence detection at 410 nm after excitation at 230 nm. Aspirin (ASP) was used as an internal standard. The proposed method was rectilinear over 2.0–40.0 (MET) and 40.0–800.0 ng/mL (LOS), with limits of detection of 0.22 and 4.52 ng/mL and limits of quantification of 0.68 and 13.70 ng/mL for MET and LOS, respectively. The method was successfully applied for the simultaneous analysis of the studied drugs in their laboratory‐prepared mixtures, single tablets and co‐formulated tablets. Moreover, the method was applied to an in vitro drug release (dissolution) test. The method was further extended to the determination of LOS in spiked human plasma. Statistical evaluation and comparison of data obtained using the proposed and comparison methods revealed no significant difference between the two methods in addition to good accuracy and precision for the proposed method. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid, simple, and sensitive second‐derivative synchronous fluorimetric method has been developed and validated for the simultaneous analysis of a binary mixture of desloratadine (DSL) and montelukast sodium (MKT) in their co‐formulated tablets. The method is based on measurement of the synchronous fluorescence intensities of the two drugs in McIlvaine's buffer, pH 2.3, in the presence of carboxy methyl cellulose sodium (CMC) as a fluorescence enhancer at a constant wavelength difference (Δλ) of 160 nm. The presence of CMC enhanced the synchronous fluorescence intensity of DSL by 216% and that of MKT by 28%. A linear dependence of the concentration on the amplitude of the second derivative synchronous fluorescence spectra was achieved over the ranges of 0.10–2.00 and 0.20–2.00 µg/mL with limits of detection of 0.02 and 0.03, and limits of quantification of 0.05 and 0.10 µg/mL for DSL and MKT, respectively. The proposed method was successfully applied for the determination of the studied compounds in laboratory‐prepared mixtures and tablets. The results were in good agreement with those obtained with the comparison method. The high sensitivity attained by the proposed method allowed the determination of MKT in spiked human plasma with average % recovery of 100.11 ± 2.44 (n = 3). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, a simple, sensitive and selective spectroflourimetric method has been developed for the determination of salmon calcitonin (sCT) in ampules. The method is based on the reaction between sCT and fluorescamine at pH 8.5 in borate buffer, resulting in a highly fluorescent derivative. Fluorescence of derivatized sCT solutions was measured by setting the excitation and emission monochromators and slit widths to 390, 484 and 10 nm, respectively. Sevaral derivatization parameters were optimized. A calibration graph was constructed using standard solutions of the derivatized calcitonin in the range 0.5–6.0 µg/mL. Limit of detection and limit of quantification values were determined to be 0.124 and 0.372 µg/mL, respectively. The proposed method was successfully applied for the determination of sCT in commercially available ampules. High recovery values (101.0–102.0 %), and a low relative standard deviation (RSD %) value (5.3–5.4) proved the accuracy and precision of the proposed method. An isocratic reversed‐phase high‐performance liquid chromatographic (HPLC) method, as a reference, was also developed for the determination of sCT. A reversed‐phase Nucleosil® C18 column (250 mm × 4.6 mm i.d., 10 µm particle size, 120 Å pore size) was used and the detector was set at 210 nm. Statistical comparison of the results of the two methods showed clearly that there was no significant difference between them. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号