共查询到20条相似文献,搜索用时 15 毫秒
1.
Induced pluripotent stem(iPS) cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs) are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cell... 相似文献
2.
Induced pluripotent stem(iPS)cells can be derived from human somatic cells by cellular reprogramming.This technology provides a potential source of non-controversial therapeutic cells for tissue repair,drug discovery,and opportunities for studying the molecular basis of human disease.Normally,mouse embryonic fibroblasts(MEFs)are used as feeder layers in the initial derivation of iPS lines.The purpose of this study was to determine whether SNL fibroblasts can be used to support the growth of human iPS cells reprogrammed from somatic cells using lentivirai expressed reprogramming factors.In our study,iPS cells expressed common pluripotency markers,displayed human embryonic stern cells(hESCs)morphology and unmethylated promoters of NANOG and OCT4.These data demonstrate that SNL feeder cells can support the derivation and maintenance of human iPS cells. 相似文献
3.
4.
Mesenchymal stem cells (MSCs) have received significant attention in recent years due to their large potential for cell therapy. Indeed, they secrete a wide variety of immunomodulatory factors of interest for the treatment of immune-related disorders and inflammatory diseases. MSCs can be extracted from multiple tissues of the human body. However, several factors may restrict their use for clinical applications: the requirement of invasive procedures for their isolation, their limited numbers, and their heterogeneity according to the tissue of origin or donor. In addition, MSCs often present early signs of replicative senescence limiting their expansion in vitro, and their therapeutic capacity in vivo. Due to the clinical potential of MSCs, a considerable number of methods to differentiate induced pluripotent stem cells (iPSCs) into MSCs have emerged. iPSCs represent a new reliable, unlimited source to generate MSCs (MSCs derived from iPSC, iMSCs) from homogeneous and well-characterized cell lines, which would relieve many of the above mentioned technical and biological limitations. Additionally, the use of iPSCs prevents some of the ethical concerns surrounding the use of human embryonic stem cells. In this review, we analyze the main current protocols used to differentiate human iPSCs into MSCs, which we classify into five different categories: MSC Switch, Embryoid Body Formation, Specific Differentiation, Pathway Inhibitor, and Platelet Lysate. We also evaluate common and method-specific culture components and provide a list of positive and negative markers for MSC characterization. Further guidance on material requirements to produce iMSCs with these methods and on the phenotypic features of the iMSCs obtained is added. The information may help researchers identify protocol options to design and/or refine standardized procedures for large-scale production of iMSCs fitting clinical demands. 相似文献
5.
Lee G Studer L 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1575):2286-2296
Induced pluripotent stem (iPS) cells have considerable promise as a novel tool for modelling human disease and for drug discovery. While the generation of disease-specific iPS cells has become routine, realizing the potential of iPS cells in disease modelling poses challenges at multiple fronts. Such challenges include selecting a suitable disease target, directing the fate of iPS cells into symptom-relevant cell populations, identifying disease-related phenotypes and showing reversibility of such phenotypes using genetic or pharmacological approaches. Finally, the system needs to be scalable for use in modern drug discovery. Here, we will discuss these points in the context of modelling familial dysautonomia (FD, Riley-Day syndrome, hereditary sensory and autonomic neuropathy III (HSAN-III)), a rare genetic disorder in the peripheral nervous system. We have demonstrated three disease-specific phenotypes in FD-iPS-derived cells that can be partially rescued by treating cells with the plant hormone kinetin. Here, we will discuss how to use FD-iPS cells further in high throughput drug discovery assays, in modelling disease severity and in performing mechanistic studies aimed at understanding disease pathogenesis. FD is a rare disease but represents an important testing ground for exploring the potential of iPS cell technology in modelling and treating human disease. 相似文献
6.
7.
HUANG Ke LIU PengFei LI Xiang CHEN ShuBin WANG LiHui QIN Li SU ZhengHui HUANG WenHao LIU JuLi JIA Bei LIU Jie CAI JingLei PEI DuanQing PAN GuangJin 《中国科学:生命科学英文版》2014,57(2):162-170
The breakthrough development of induced pluripotent stem cells(iPSCs)raises the prospect of patient-specific treatment for many diseases through the replacement of affected cells.However,whether iPSC-derived functional cell lineages generate a deleterious immune response upon auto-transplantation remains unclear.In this study,we differentiated five human iPSC lines from skin fibroblasts and urine cells into neural progenitor cells(NPCs)and analyzed their immunogenicity.Through co-culture with autogenous peripheral blood mononuclear cells(PBMCs),we showed that both somatic cells and iPSC-derived NPCs do not stimulate significant autogenous PBMC proliferation.However,a significant immune reaction was detected when these cells were co-cultured with allogenous PBMCs.Furthermore,no significant expression of perforin or granzyme B was detected following stimulation of autogenous immune effector cells(CD3+CD8 T cells,CD3+CD8+T cells or CD3 CD56+NK cells)by NPCs in both PBMC and T cell co-culture systems.These results suggest that human iPSC-derived NPCs may not initiate an immune response in autogenous transplants,and thus set a base for further preclinical evaluation of human iPSCs. 相似文献
8.
Human induced pluripotent stem (iPS) cells obtained by reprogramming technology are a source of great hope, not only in terms of applications in regenerative medicine, such as cell transplantation therapy, but also for modeling human diseases and new drug development. In particular, the production of iPS cells from the somatic cells of patients with intractable diseases and their subsequent differentiation into cells at affected sites (e.g., neurons, cardiomyocytes, hepatocytes, and myocytes) has permitted the in vitro construction of disease models that contain patient‐specific genetic information. For example, disease‐specific iPS cells have been established from patients with neuropsychiatric disorders, including schizophrenia and autism, as well as from those with neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. A multi‐omics analysis of neural cells originating from patient‐derived iPS cells may thus enable investigators to elucidate the pathogenic mechanisms of neurological diseases that have heretofore been unknown. In addition, large‐scale screening of chemical libraries with disease‐specific iPS cells is currently underway and is expected to lead to new drug discovery. Accordingly, this review outlines the progress made via the use of patient‐derived iPS cells toward the modeling of neurological disorders, the testing of existing drugs, and the discovery of new drugs.
9.
胚胎干细胞(embryonic stem cells,ESC)在人类遗传病学研究、疾病模型建立、器官再生以及动物物种改良和定向变异等方面的地位是其他类型的细胞不可取代的。但是,由于实验技术和体外培养条件的限制,除了小鼠、恒河猴和人之外,大鼠、猪、牛、羊等其他哺乳动物的ES细胞系被证明很难获得。先后有多个研究小组报道了他们利用新兴的诱导多能干细胞(induced pluripotent stem cells,iPS细胞)技术成功建立大鼠和猪的iPS细胞系的研究成果。迄今为止,这两个物种是在未成功建立ES细胞系之前利用iPS技术建立多能干细胞系的成功范例。这些研究对于那些还未建立ES细胞的物种建立多能干细胞系提供了一种新的方案,也将给这些物种的胚胎干细胞的建立、基因修饰动物的产生以及人类医疗事业的促进和发展带来新的希望。 相似文献
10.
Ying Luo Cheng Lou Sui Zhang Zhengyan Zhu Qianzhe Xing Peng Wang Tong Liu Hui Liu Chenglong Li Wenxia Shi Zhi Du Yingtang Gao 《Cytotherapy》2018,20(1):95-107
Background aims
Human induced pluripotent stem cells (hiPSCs) are becoming increasingly popular in research endeavors due to their potential for clinical application; however, such application is challenging due to limitations such as inferior function and low induction efficiency. In this study, we aimed to establish a three-dimensional (3D) culture condition to mimic the environment in which hepatogenesis occurs in vivo to enhance the differentiation of hiPSCs for large-scale culture and high throughput BAL application.Methods
We used hydrogel to create hepatocyte-like cell (HLC) spheroids in a 3D culture condition and analyzed the cell-behavior and differentiation properties of hiPSCs in a synthetic nanofiber scaffold.Results
We found that treating cells with Y-27632 promoted the formation of spheroids, and the cells aggregated more rapidly in a 3D culture condition. The ALB secretion, urea production and glycogen synthesis by HLCs in 3D were significantly higher than those grown in a 2-dimensional culture condition. In addition, the metabolic activities of the CYP450 enzymes were also higher in cells differentiated in the 3D culture condition.Conclusions
3D hydrogel culture condition can promote differentiation of hiPSCs into hepatocytes. The 3D culture approach could be applied to the differentiation of hiPSCs into hepatocytes for bioartificial liver. 相似文献11.
Igor I. Slukvin 《Cell cycle (Georgetown, Tex.)》2013,12(5):720-727
Identification of sequential progenitors leading to blood formation from pluripotent stem cells (PSCs) will be essential for understanding the molecular mechanisms of hematopoietic lineage specification and for development of technologies for in vitro production of hematopoietic stem cells (HSCs). It is well established that during development, blood and endothelial cells in the extraembryonic and embryonic compartments are formed in parallel from precursors with angiogenic and hematopoietic potentials. However, the identity and hierarchy of these precursors in human PSC (hPSC) cultures remain obscure. Using developmental stage-specific mesodermal and endothelial markers and functional assays, we recently identified discrete populations of angiohematopoietic progenitors from hPSCs, including mesodermal precursors and hemogenic endothelial cells with primitive and definitive hematopoietic potentials. In addition, we discovered a novel population of multipotent hematopoietic progenitors with an erythroid phenotype, which retain angiogenic potential. Here we introduce our recent findings and discuss their implication for defining putative HSC precursor and factors required for activation of self-renewal potential in hematopoietic cells emerging from endothelium. 相似文献
12.
Wang YC Nakagawa M Garitaonandia I Slavin I Altun G Lacharite RM Nazor KL Tran HT Lynch CL Leonardo TR Liu Y Peterson SE Laurent LC Yamanaka S Loring JF 《Cell research》2011,21(11):1551-1563
Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications. Using lectin arrays, we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples, and identified a small group of lectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types. These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined, regardless of the laboratory of origin, the culture conditions, the somatic cell type reprogrammed, or the reprogramming method used. We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry, and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation. Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases, which may underlie these differences in protein glycosylation and lectin binding. Taken together, our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells, and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations. 相似文献
13.
14.
15.
16.
Purification of small molecule‐induced cardiomyocytes from human induced pluripotent stem cells using a reporter system 下载免费PDF全文
Geun Hye Hwang So Mi Park Ho Jae Han Joong Sun Kim Seung Pil Yun Jung Min Ryu Ho Jin Lee Woochul Chang Su‐Jin Lee Jeong‐Hee Choi Jin‐Sung Choi Min Young Lee 《Journal of cellular physiology》2017,232(12):3384-3395
17.
18.
Sheena Abraham Steven D. Sheridan Bradley Miller Raj R. Rao 《Biotechnology progress》2010,26(4):1126-1134
Human pluripotent stem cells (hPSCs) that include human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) have gained enormous interest as potential sources for regenerative biomedical therapies and model systems for studying early development. Traditionally, mouse embryonic fibroblasts have been used as a supportive feeder layer for the sustained propagation of hPSCs. However, the use of nonhuman‐derived feeders presents concerns about the possibility of xenogenic contamination, labor intensiveness, and variability in experimental results in hPSC cultures. Toward addressing some of these concerns, we report the propagation of three different hPSCs on feeder‐free extracellular matrix (ECM)‐based substrates derived from human fibroblasts. hPSCs propagated in this setting were indistinguishable by multiple criteria, including colony morphology, expression of pluripotency protein markers, trilineage in vitro differentiation, and gene expression patterns, from hPSCs cultured directly on a fibroblast feeder layer. Further, hPSCs maintained a normal karyotype when analyzed after 15 passages in this setting. Development of this ECM‐based culture system is a significant advance in hPSC propagation methods as it could serve as a critical component in the development of humanized propagation systems for the production of stable hPSCs and its derivatives for research and therapeutic applications. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
19.
Paik I Scurr DJ Morris B Hall G Denning C Alexander MR Shakesheff KM Dixon JE 《Biotechnology and bioengineering》2012,109(10):2630-2641
Tissue function during development and in regenerative medicine completely relies on correct cell organization and patterning at micro and macro scales. We describe a rapid method for patterning mammalian cells including human embryonic stem cells (HESCs) and induced pluripotent stem cells (iPSCs) on elastomeric membranes such that micron‐scale control of cell position can be achieved over centimeter‐length scales. Our method employs surface engineering of hydrophobic polydimethylsiloxane (PDMS) membranes by plasma polymerization of allylamine. Deposition of plasma polymerized allylamine (ppAAm) using our methods may be spatially restricted using a micro‐stencil leaving faithful hydrophilic ppAAm patterns. We employed airbrushing to create aerosols which deposit extracellular matrix (ECM) proteins (such as fibronectin and Matrigel?) onto the same patterned ppAAm rich regions. Cell patterns were created with a variety of well characterized cell lines (e.g., NIH‐3T3, C2C12, HL1, BJ6, HESC line HUES7, and HiPSC line IPS2). Individual and multiple cell line patterning were also achieved. Patterning remains faithful for several days and cells are viable and proliferate. To demonstrate the utility of our technique we have patterned cells in a variety of configurations. The ability to rapidly pattern cells at high resolution over macro scales should aid future tissue engineering efforts for regenerative medicine applications and in creating in vitro stem cell niches. Biotechnol. Bioeng. 2012; 109: 2630–2641. © 2012 Wiley Periodicals, Inc. 相似文献
20.
Unternaehrer JJ Daley GQ 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2011,366(1575):2274-2285
Research into the pathophysiological mechanisms of human disease and the development of targeted therapies have been hindered by a lack of predictive disease models that can be experimentally manipulated in vitro. This review describes the current state of modelling human diseases with the use of human induced pluripotent stem (iPS) cell lines. To date, a variety of neurodegenerative diseases, haematopoietic disorders, metabolic conditions and cardiovascular pathologies have been captured in a Petri dish through reprogramming of patient cells into iPS cells followed by directed differentiation of disease-relevant cells and tissues. However, realizing the true promise of iPS cells for advancing our basic understanding of disease and ultimately providing novel cell-based therapies will require more refined protocols for generating the highly specialized cells affected by disease, coupled with strategies for drug discovery and cell transplantation. 相似文献