首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
It is often envisioned that cations might coordinate at specific sites of nucleic acids and play an important structural role, for instance in the transition between B‐DNA and Z‐DNA. However, nucleic acid models explicitly devoid of specific sites may also exhibit features previously considered as evidence for specific binding. Such is the case of the “composite cylinder” (or CC) model which spreads out localized features of DNA structure and charge by cylindrical averaging, while sustaining the main difference between the B and Z structures, namely the better immersion of the B‐DNA phosphodiester charges in the solution. Here, we analyze the non‐electrostatic component of the free‐energy difference between B‐DNA and Z‐DNA. We also compute the composition of the counterion sheath in a wide range of mixed‐salt solutions and of temperatures: in contrast with the large difference of composition between the B‐DNA and Z‐DNA forms, the temperature dependence of sheath composition, previously unknown, is very weak. In order to validate the model, the mixed‐salt predictions should be compared to experiment. We design a procedure for future measurements of the sheath composition based on Anomalous Small‐Angle X‐ray Scattering and complemented by 31P NMR. With due consideration for the kinetics of the B‐Z transition and for the capacity of generating at will the B or Z form in a single sample, the 5′‐d[T‐(m5C‐G)12‐T] 26‐mer emerges as a most suitable oligonucleotide for this study. Finally, the application of the finite element method to the resolution of the Poisson‐Boltzmann equation is described in detail. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 369–384, 2016.  相似文献   

2.
Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated $0.73 to $1.79 per liter ($2.74 to $6.76 per gal) of jet fuel. In all cases, the cost of raw materials accounted for more than 70% of total operational cost. Biorefinery was observed self‐sustainable for steam and electricity requirement, because of in‐house steam and electricity generation from burning of bagasse. Minimum fuel selling prices with a 10% discount rate for 20% lipid case was estimated $1.40/L ($5.31/gal), which was lower than most of the reported prices of renewable jet fuel produced from other oil crops and algae. Along with lower production costs, lipid‐cane could produce as high as 16 times the jet fuel (6307 L ha?1) per unit land than that of other oil crops and do so using low‐value land unsuited to most other crops, while being highly water and nitrogen use efficient.  相似文献   

3.
H uman α ‐lactalbumin m ade le thal to t umor cells (HAMLET) and its analogs are partially unfolded protein‐oleic acid (OA) complexes that exhibit selective tumoricidal activity normally absent in the native protein itself. To understand the nature of the interaction between protein and OA moieties, charge‐specific chemical modifications of lysine side chains involving citraconylation, acetylation, and guanidination were employed and the biophysical and biological properties were probed. Upon converting the original positively‐charged lysine residues to negatively‐charged citraconyl or neutral acetyl groups, the binding of OA to protein was eliminated, as were any cytotoxic activities towards osteosarcoma cells. Retention of the positive charges by converting lysine residues to homoarginine groups (guanidination); however, yielded unchanged binding of OA to protein and identical tumoricidal activity to that displayed by the wild‐type α‐lactalbumin‐oleic acid complex. With the addition of OA, the wild‐type and guanidinated α‐lactalbumin proteins underwent substantial conformational changes, such as partial unfolding, loss of tertiary structure, but retention of secondary structure. In contrast, no significant conformational changes were observed in the citraconylated and acetylated α‐lactalbumins, most likely because of the absence of OA binding. These results suggest that electrostatic interactions between the positively‐charged basic groups on α‐lactalbumin and the negatively‐charged carboxylate groups on OA molecules play an essential role in the binding of OA to α‐lactalbumin and that these interactions appear to be as important as hydrophobic interactions. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
5.
The exploration of microbial metabolism is expected to support the development of a sustainable economy and tackle several problems related to the burdens of human consumption. Microorganisms have the potential to catalyze processes that are currently unavailable, unsustainable and/or inefficient. Their metabolism can be optimized and further expanded using tools like the clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR‐Cas) systems. These tools have revolutionized the field of biotechnology, as they greatly streamline the genetic engineering of organisms from all domains of life. CRISPR‐Cas and other nucleases mediate double‐strand DNA breaks, which must be repaired to prevent cell death. In prokaryotes, these breaks can be repaired through either homologous recombination, when a DNA repair template is available, or through template‐independent end joining, of which two major pathways are known. These end joining pathways depend on different sets of proteins and mediate DNA repair with different outcomes. Understanding these DNA repair pathways can be advantageous to steer the results of genome engineering experiments. In this review, we discuss different strategies for the genetic engineering of prokaryotes through either non‐homologous end joining (NHEJ) or alternative end joining (AEJ), both of which are independent of exogenous DNA repair templates.  相似文献   

6.
The interaction of two DNA octamers, d(m5CG)4 and d(GGAATTCC), with the polyamines spermine4+ and spermidine3+, has been studied by means of 1H‐nmr nuclear Overhauser effect (NOE) difference measurements. The experiments were performed at 10°C and for a polyamine charge to DNA charge (i.e., phosphate) ratio of 0.4, where the solution of d(m5CG)4 contains about 50% Z‐form of the DNA. The results show that the polyamine intramolecular NOEs for the protons on the propyl chains are similarly negative with the two oligonucleotides, while those on the butyl chain show slightly more negative NOE with d(m5CG)4 than with d(GGAATTCC). The fully N‐methylated analogues of spermine (Me10Spn4+) and spermidine (Me8Spd3+) as well as the diamines 1,3‐diaminopropane (DAP2+) and 1,4‐diaminobutane (putrescine2+) have been studied for the ability to transform d(m5CG)4 from the B‐ to the Z‐form. 1H‐nmr spectra showed the order spermine4+ > spermidine3+ > Me10Spn4+ > Me8Spd3+ > 1,3‐diaminopropane2+ > putrescine2+, with spermine showing the largest relative amount of Z‐DNA. 1H‐nmr pulsed‐gradient self‐diffusion measurements of the triamines showed a large difference in the interaction of Spd and Me8Spd with the two different duplexes. With the same duplex (either of the two), however, no difference between Spd and Me8Spd can be seen. Within a two‐state model this is interpreted as a larger fraction of bound polyamines with d(m5CG)4 than with d(GGAATTCC). © 1999 John Wiley & Sons, Inc. Biopoly 49: 41–53, 1999  相似文献   

7.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号