首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is by now well established that plants use various strategies to defend themselves against herbivores. Besides conventional weapons such as spines and stinging hairs and sophisticated chemical defenses, plants can also involve the enemies of the herbivores in their defense. It has been suggested that plants could even use entomopathogens as part of their defense strategies. In this paper, we show that Brassica oleraceae plants that are attacked by Myzus persicae aphids infected with an entomopathogenic parvovirus (M. persicae densovirus) transport the virus through the phloem locally and systematically. Moreover, healthy aphids that fed on the same leaf, but separated from infected aphids were infected via the plant. Hence, this is proof of the principle that plants can be vectors of an insect virus and can possibly use this virus as a defense against herbivores.  相似文献   

2.
Herbivory-induced signalling in plants: perception and action   总被引:1,自引:0,他引:1  
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.  相似文献   

3.
A plant's responses to attack from particular pathogens and herbivores may result in resistance to subsequent attack from the same species, but may also affect different species. Such a cross-resistance, called immunization or vaccination, can benefit the plant, if the fitness consequences of attack from the initial attacker are less than those from subsequent attackers. Here, we report an example of naturally occurring vaccination of the native tobacco plant, Nicotiana attenuata, against Manduca hornworms by prior attack from the mirid bug, Tupiocoris notatus (Dicyphus minimus), which results from the elicitation of two categories of induced plant responses. First, attack from both herbivore species causes the plants in nature to release predator-attracting volatile organic compounds (VOCs), and the attracted generalist predator, Geocoris pallens, preferentially attacks the less mobile hornworm larvae. Second, attack from both mirids and hornworms increases the accumulation of secondary metabolites and proteinase inhibitors (PIs) in the leaf tissue, which is correlated with the slow growth of Manduca larvae. Mirid damage does not significantly reduce the fitness of the plant in nature, whereas attack from the hornworm reduces lifetime seed production. Consequently, plants that are attacked by mirids realize a significant fitness advantage in environments with both herbivores. The combination of growth-slowing direct defenses and predator-attracting indirect defenses results in greater hornworm mortality on mirid-attacked plants and provides the mechanism of the vaccination phenomenon.  相似文献   

4.
Plants respond to herbivory through various morphological, biochemicals, and molecular mechanisms to counter/offset the effects of herbivore attack. The biochemical mechanisms of defense against the herbivores are wide-ranging, highly dynamic, and are mediated both by direct and indirect defenses. The defensive compounds are either produced constitutively or in response to plant damage, and affect feeding, growth, and survival of herbivores. In addition, plants also release volatile organic compounds that attract the natural enemies of the herbivores. These strategies either act independently or in conjunction with each other. However, our understanding of these defensive mechanisms is still limited. Induced resistance could be exploited as an important tool for the pest management to minimize the amounts of insecticides used for pest control. Host plant resistance to insects, particularly, induced resistance, can also be manipulated with the use of chemical elicitors of secondary metabolites, which confer resistance to insects. By understanding the mechanisms of induced resistance, we can predict the herbivores that are likely to be affected by induced responses. The elicitors of induced responses can be sprayed on crop plants to build up the natural defense system against damage caused by herbivores. The induced responses can also be engineered genetically, so that the defensive compounds are constitutively produced in plants against are challenged by the herbivory. Induced resistance can be exploited for developing crop cultivars, which readily produce the inducible response upon mild infestation, and can act as one of components of integrated pest management for sustainable crop production.  相似文献   

5.
植物对同种昆虫重复取食做出更有效的响应是植物适应自然界虫害周期性爆发的重要策略。为了研究蒙古沙冬青对其主要害虫灰斑古毒蛾幼虫重复取食响应的代谢基础,本实验采用基于核磁共振(NMR)的代谢组学技术,分析了遭受同一年不同代灰斑古毒蛾幼虫取食的蒙古沙冬青叶片和对照组幼苗叶片的代谢差异。结果表明,仅遭受第一代幼虫取食叶片在第二代幼虫期与对照之间代谢物存在较小差异,而仅遭受第二代幼虫取食叶片与遭受两代幼虫取食叶片代谢差异显著,仅遭受第一代与仅遭受第二代幼虫取食的植株相邻分枝叶片差异显著。另外,只有仅遭受第二代幼虫取食组幼苗表现出处理叶片与相邻分枝叶片的显著代谢差异,并且这种代谢差异为总体代谢的变化,而并未表现为特定代谢物含量变化。由此可见,蒙古沙冬青能在代谢水平以很小的代谢变化来保存昆虫取食信息,在遭受同种昆虫取食后,代谢差异被放大,而且这种信息保存在遭受取食叶片中表现更明显。  相似文献   

6.
虫害诱导的植物挥发物代谢调控机制研究进展   总被引:4,自引:0,他引:4  
穆丹  付建玉  刘守安  韩宝瑜 《生态学报》2010,30(15):4221-4233
长期受自然界的非生物/生物侵害,植物逐步形成了复杂的防御机制,为防御植食性昆虫的为害,植物释放虫害诱导产生的挥发性化合物(herbivore-induced plant volatiles,HIPVs)。HIPVs是植物-植食性昆虫-天敌三级营养关系之间协同进化的结果。HIPVs的化学组分因植物、植食性昆虫种类的不同而有差异。生态系统中,HIPVs可在植物与节肢动物、植物与微生物、虫害植物与邻近的健康植物、或同一植株的受害和未受害部位间起作用,介导防御性反应。HIPVs作为寄主定位信号,在吸引捕食性、寄生性天敌过程中起着重要作用。HIPVs还可以作为植物间信息交流的工具,启动植株的防御反应而增强抗虫性。不论从生态学还是经济学角度来看,HIPVs对于农林生态系中害虫综合治理策略的完善具有重要意义。前期的研究在虫害诱导植物防御的化学生态学方面奠定了良好基础,目前更多的研究转向阐述虫害诱导植物抗性的分子机制。为了深入了解HIPVs的代谢调控机制,主要从以下几个方面进行了综述。因为植食性昆虫取食造成的植物损伤是与昆虫口腔分泌物共同作用的结果,所以首先阐述口腔分泌物在防御反应中的作用。挥发物诱导素volicitin和β-葡萄糖苷酶作为口腔分泌物的组分,是产生HIPVs的激发子,通过调节伤信号诱发HIPVs的释放。接着阐述了信号转导途径对HIPVs释放的调节作用,并讨论了不同信号途径之间的交互作用。就HIPVs的代谢过程而言,其过程受信号转导途径(包括茉莉酸、水杨酸、乙烯、过氧化氢信号途径)的调控,其中茉莉酸信号途径是诱发HIPVs释放的重要途径。基于前人的研究,综述了HIPVs的主要代谢过程及其过程中关键酶类的调控作用。文中的HIPVs主要包括萜烯类化合物、绿叶挥发物和莽草酸途径产生的芳香族化合物,如水杨酸甲酯和吲哚等。作为化学信号分子,这些化合物中的一部分还能激活邻近植物防御基因的表达。萜烯合酶是各种萜烯类化合物合成的关键酶类,脂氧合酶、过氧化氢裂解酶也是绿叶挥发物代谢途径中的研究热点,而苯丙氨酸裂解酶和水杨酸羧基甲基转移酶分别是合成水杨酸及其衍生物水杨酸甲酯的关键酶类。这些酶类的基因在转录水平上调控着HIPVs代谢途径。最后展望了HIPVs的研究前景。  相似文献   

7.
Many plants and ants engage in mutualisms where plants provide food and shelter to the ants in exchange for protection against herbivores and competitors. Although several species of herbivores thwart ant defenses and extract resources from the plants, the mechanisms that allow these herbivores to avoid attack are poorly understood. The specialist insect herbivore, Piezogaster reclusus (Hemiptera: Coreidae), feeds on Neotropical bull-horn acacias (Vachellia collinsii) despite the presence of Pseudomyrmex spinicola ants that nest in and aggressively defend the trees. We tested three hypotheses for how P. reclusus feeds on V. collinsii while avoiding ant attack: (1) chemical camouflage via cuticular surface compounds, (2) chemical deterrence via metathoracic defense glands, and (3) behavioral traits that reduce ant detection or attack. Our results showed that compounds from both P. reclusus cuticles and metathoracic glands reduce the number of ant attacks, but only cuticular compounds appear to be essential in allowing P. reclusus to feed on bull-horn acacia trees undisturbed. In addition, we found that ant attack rates to P. reclusus increased significantly when individuals were transferred between P. spinicola ant colonies. These results are consistent with the hypothesis that chemical mimicry of colony-specific ant or host plant odors plays a key role in allowing P. reclusus to circumvent ant defenses and gain access to important resources, including food and possibly enemy-free space. This interaction between ants, acacias, and their herbivores provides an excellent example of the ability of herbivores to adapt to ant defenses of plants and suggests that herbivores may play an important role in the evolution and maintenance of mutualisms.  相似文献   

8.
Success of plants largely depends on their ability to defend against herbivores. Since emergence of the first voracious consumers, plants maintained adapting their structures and chemistry to escape from extinction. The constant pressure was further accelerated by adaptation of herbivores to plant defenses, which all together sparked the rise of a chemical empire comprised of thousands of specialized metabolites currently found in plants. Metabolic diversity in the plant kingdom is truly amazing, and although many plant metabolites have already been identified, a large number of potentially useful chemicals remain unexplored in plant bio-resources. Similarly, biosynthetic routes for plant metabolites involve many enzymes, some of which still wait for identification and biochemical characterization. Moreover, regulatory mechanisms that control gene expression and enzyme activities in specialized metabolism of plants are scarcely known. Finally, understanding of how plant defense chemicals exert their toxicity and/or repellency against herbivores remains limited to typical examples, such as proteinase inhibitors, cyanogenic compounds and nicotine. In this review, we attempt summarizing the current status quo in metabolic defense of plants that is predominantly based on the survey of ubiquitous examples of plant interactions with chewing herbivores.  相似文献   

9.
The foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata). Here, we demonstrate that gut microbes are crucial in allowing herbivores to consume toxic plants. Creosote toxins altered the population structure of the gut microbiome to facilitate an increase in abundance of genes that metabolise toxic compounds. In addition, woodrats were unable to consume creosote toxins after the microbiota was disrupted with antibiotics. Last, ingestion of toxins by naïve hosts was increased through microbial transplants from experienced donors. These results demonstrate that microbes can enhance the ability of hosts to consume PSCs and therefore expand the dietary niche breadth of mammalian herbivores.  相似文献   

10.
In response to herbivore attack, plants mobilize chemical defenses and release distinct bouquets of volatiles. Aboveground herbivores are known to use changes in leaf volatile patterns to make foraging decisions, but it remains unclear whether belowground herbivores also use volatiles to select suitable host plants. We therefore investigated how above- and belowground infestation affects the performance of the root feeder Diabrotica virgifera virgifera, and whether the larvae of this specialized beetle are able to use volatile cues to assess from a distance whether a potential host plant is already under herbivore attack. Diabrotica virgifera larvae showed stronger growth on roots previously attacked by conspecific larvae, but performed more poorly on roots of plants whose leaves had been attacked by larvae of the moth Spodoptera littoralis. Fittingly, D. virgifera larvae were attracted to plants that were infested with conspecifics, whereas they avoided plants that were attacked by S. littoralis. We identified (E)-β-caryophyllene, which is induced by D. virgifera, and ethylene, which is suppressed by S. littoralis, as two signals used by D. virgifera larvae to locate plants that are most suitable for their development. Our study demonstrates that soil-dwelling insects can use herbivore-induced changes in root volatile emissions to identify suitable host plants.  相似文献   

11.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

12.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

13.
Plants defend themselves against herbivores not only by a single trait but also by diversified multiple defense strategies. It remains unclear how these multiple defense mechanisms are effectively organized against herbivores. In this study, we focused on Brassicaceae plants, which have one of the most diversified secondary metabolites, glucosinolates (GSLs), as a defense against herbivores. By analyzing various defense traits including GSL profiles among 12 species (11 genera) of Brassicaceae plants, it is revealed that their defense strategies can be divided into three categories as multiple defenses. The GSL profiles differed between these three categories: (i) high nutritional level with long‐chain aliphatic GSLs; (ii) low nutritional level and high physical defenses with short‐chain aliphatic GSLs; and (iii) high nutritional level and low defense. The feeding experiment was conducted using two types of herbivores, Pieris rapae (Lepidoptera: Pieridae) as a specialist herbivore and the Eri silkmoth Samia cynthia ricini (Lepidoptera: Saturniidae) as a generalist, to assess the ability of each plant in multiple defense strategy. It was observed that the Eri silkmoth's performance differed according to which defense strategy it was exposed to. However, the growth rate of P. rapae did not vary among the three categories of defense strategy. These results suggest that the diversified defense strategies of Brassicaceae species have evolved to cope with diversified herbivores.  相似文献   

14.
One possible function of extrafloral nectaries is to attract insects, particularly ants, which defend plants from herbivores. We determined whether ants visiting saplings of the tree Stryphnodendronmicrostachyum (Leguminosae) provide protection (decreased plant damage due to ant molestation or killing of herbivores) and benefit (increased plant growth and reproduction associated with ant presence) to the plant. We compared ant and herbivore abundance, herbivore damage and growth of ant-visited plants and ant-excluded plants grown in sun and shade microhabitats of a 6-ha plantation in Costa Rica over a 7-month period. Results show that ants provided protection to plants not by reducing herbivore numbers but by molesting herbivores. Ants also reduced the incidence of pathogen attack on leaves. Protection was greater in the shade than in the sun, probably due to lower herbivore attack in the sun. Protection was also variable within sun and shade habitats, and this variability appeared to be related to variable ant visitation. Results also indicate that ant presence benefits the plant: ant-visited plants grew significantly more in height than ant-excluded plants. The cultivation of ants may serve as an important natural biological control in tropical forestry and agroforestry systems, where increased plant density can otherwise lead to increased herbivore attack. Received: 4 May 1998 / Accepted: 6 October 1998  相似文献   

15.
It has been historically difficult to manipulate secondary compounds in living plants to assess how these compounds influence plant-herbivore and plant-pollinator interactions. Using a hemiparasitic plant that takes up secondary compounds from host plants, I experimentally manipulated secondary compounds in planta and assessed their effects on herbivores and pollinators in the field. Here, I show that the uptake of alkaloids in the annual hemiparasite Castilleja indivisa resulted in decreased herbivory, increased visitation by pollinators, and increased lifetime seed production. These results indicate that resistance traits such as alkaloids can increase plant fitness directly by reducing herbivore attack and indirectly by increasing pollinator visitation to defended plants. Thus, selection for production of secondary compounds may be underestimated by considering only the direct effect of herbivores on plant fitness.  相似文献   

16.
Plant Volatiles: Recent Advances and Future Perspectives   总被引:2,自引:0,他引:2  
Volatile compounds act as a language that plants use for their communication and interaction with the surrounding environment. To date, a total of 1700 volatile compounds have been isolated from more than 90 plant families. These volatiles, released from leaves, flowers, and fruits into the atmosphere and from roots into the soil, defend plants against herbivores and pathogens or provide a reproductive advantage by attracting pollinators and seed dispersers. Plant volatiles constitute about 1% of plant secondary metabolites and are mainly represented by terpenoids, phenylpropanoids/benzenoids, fatty acid derivatives, and amino acid derivatives. In this review we focus on the functions of plant volatiles, their biosynthesis and regulation, and the metabolic engineering of the volatile spectrum, which results in plant defense improvement and changes of scent and aroma properties of flowers and fruits.  相似文献   

17.
Among the sophisticated means that plants use to defend themselves from the constant threat of insect attack, perhaps the most intriguing is the herbivore-induced release of volatile compounds. These compounds act as SOS signals, recruiting the insect's natural enemies to defend the plant.  相似文献   

18.
Small RNAs(s RNAs) play essential roles in plants upon biotic stress. Plants utilize RNA silencing machinery to facilitate pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity to defend against pathogen attack or to facilitate defense against insect herbivores. Pathogens, on the other hand, are also able to generate effectors and s RNAs to counter the host immune response. The arms race between plants and pathogens/insect herbivores has triggered the evolution of s RNAs,RNA silencing machinery and pathogen effectors. A great number of studies have been performed to investigate the roles of s RNAs in plant defense, bringing in the opportunity to utilize s RNAs in plant protection. Transgenic plants with pathogen-derived resistance ability or transgenerational defense have been generated, which show promising potential as solutions for pathogen/insect herbivore problems in the field. Here we summarize the recent progress on the function of s RNAs in response to biotic stress, mainly in plant-pathogen/insect herbivore interaction,and the application of s RNAs in disease and insect herbivore control.  相似文献   

19.
Herbivore attack is known to elicit systemic defense responses that spread throughout the host plant and influence the performance of other herbivores. While these plant‐mediated indirect competitive interactions are well described, and the co‐existence of herbivores from different feeding guilds is common, the mechanisms of co‐existence are poorly understood. In both field and glasshouse experiments with a native tobacco, Nicotiana attenuata, we found no evidence of negative interactions when plants were simultaneously attacked by two spatially separated herbivores: a leaf chewer Manduca sexta and a stem borer Trichobaris mucorea. Tmucorea attack elicited jasmonic acid (JA) and jasmonoyl‐l ‐isoleucine bursts in the pith of attacked stems similar to those that occur in leaves when M. sexta attacks N. attenuata leaves. Pith chlorogenic acid (CGA) levels increased 1000‐fold to levels 6‐fold higher than leaf levels after Tmucorea attack; these increases in pith CGA levels, which did not occur in Msexta‐attacked leaves, required JA signaling. With plants silenced in CGA biosynthesis (irHQT plants), CGA, as well as other caffeic acid conjugates, was demonstrated in both glasshouse and field experiments to function as a direct defense protecting piths against Tmucorea attack, but not against leaf chewers or sucking insects. Tmucorea attack does not systemically activate JA signaling in leaves, while Msexta leaf‐attack transiently induces detectable but minor pith JA levels that are dwarfed by local responses. We conclude that tissue‐localized defense responses allow tissue‐specialized herbivores to share the same host and occupy different chemical defense niches in the same hostplant.  相似文献   

20.
《农业工程》2014,34(6):325-336
Ecologists have long ignored or underestimated the importance of plant–herbivore interactions owing to the diversities of herbivores, plant defensive strategies and ecological systems. In this review, we briefly discussed the categories of herbivores. Then we reviewed the major types of plant defenses against herbivores. Selective forces of herbivore pressures have led to the evolution of various defensive mechanisms in plants, which can be classified into (i) resistance traits that reduce the amount of damage received, including physical, chemical, and biotic traits; (ii) tolerance mechanisms that decrease the impact of herbivore damage, and (iii) escape strategies that reduce the probability of plants to be found by herbivores. These strategies have been studied at different levels from molecular genetics and genomics, to chemistry and physiology, to community and ecosystem ecology. We summarized the development of the methodology for studying plant defenses against herbivores. Particularly, 24 of those hypotheses and models, which are influential in the international community concerning the relationship between plants and herbivores, including the defensive mimicry hypothesis, the compensatory continuum hypothesis, the slow-growth-high-mortality hypothesis, etc, were introduced and grouped into four categories according to plant defense strategies in the present review. Finally, we also reviewed the research progress of plant–herbivore interactions in China, and discussed the perspectives of studies on plant–herbivore interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号