首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental question in protein science is what is the intrinsic propensity for an amino acid to be in an α-helix, β-sheet, or other backbone dihedral angle (-ψ) conformation. This question has been hotly debated for many years because including all protein crystal structures from the protein database, increases the probabilities for α-helical structures, while experiments on small peptides observe that β-sheet-like conformations predominate. We perform molecular dynamics (MD) simulations of a hard-sphere model for Ala dipeptide mimetics that includes steric interactions between nonbonded atoms and bond length and angle constraints with the goal of evaluating the role of steric interactions in determining protein backbone conformational preferences. We find four key results. For the hard-sphere MD simulations, we show that (1) β-sheet structures are roughly three and half times more probable than α-helical structures, (2) transitions between α-helix and β-sheet structures only occur when the backbone bond angle τ (N–Cα–C) is greater than 110°, and (3) the probability distribution of τ for Ala conformations in the “bridge” region of-ψ space is shifted to larger angles compared to other regions. In contrast, (4) the distributions obtained from Amber and CHARMM MD simulations in the bridge regions are broader and have increased τ compared to those for hard sphere simulations and from high-resolution protein crystal structures. Our results emphasize the importance of hard-sphere interactions and local stereochemical constraints that yield strong correlations between -ψ conformations and τ.  相似文献   

2.
Previous UV-circular dichroism (UV-CD) and NMR studies showed that Ac-AAAAAAAEAAKA-NH(2) has an alpha-helical structure in 50% (v/v) aqueous trifluoroethanol. Replacement of Ala(1) to Ala(6) with Tyr results in spectra that show an apparent loss of helicity in the same solvent. This apparent loss of helicity could be attributed to the coupling of the tyrosyl side chain chromophore with the backbone amide. However, such electronic coupling does not affect the vibrational CD (VCD) spectra. The VCD spectra of the peptides with tyrosyl residues were identical to that of the peptide containing no Tyr, which shows the same alpha-helical structure. Because it is now clear that Tyr replacement does not change the backbone conformation of peptides, UV-CD measurements should be complemented by VCD to determine the secondary structure when electronic effects can disturb the UV-CD spectrum of the inherent structure.  相似文献   

3.
Peptide models built from cis‐ and trans‐2‐aminocyclobutane‐1‐carboxylic acids (ACBCs) are studied in the solid phase by combining Fourier‐transform infrared spectroscopy (FTIR) absorption spectroscopy, vibrational circular dichroism (VCD), and quantum chemical calculations using density functional theory (DFT). The studied systems are N‐tert‐butyloxycarbonyl (Boc) derivatives of 2‐aminocyclobutanecarboxylic acid (ACBC) benzylamides, namely Boc?(cis‐ACBC)?NH?Bn and Boc?(trans‐ACBC)?NH?Bn. These two diastereomers show very different VCD signatures and intensities, which of the trans‐ACBC derivative being one order of magnitude larger in the region of the ν (CO) stretch. The spectral signature of the cis‐ACBC derivative is satisfactorily reproduced by that of the monomer extracted from the solid‐state geometry of related ACBC derivatives, which shows that no long‐range effects are implicated for this system. In terms of hydrogen bonds, the geometry of this monomer is intermediate between the C6 and C8 structures (exhibiting a 6‐ or 8‐membered cyclic NH?O hydrogen bond) previously evidenced in the gas phase. The benzyl group must be in an extended geometry to reproduce satisfactorily the shape of the VCD spectrum in the ν (CO) range, which qualifies VCD as a potential probe of dispersion interaction. In contrast, reproducing the IR and VCD spectrum of the trans‐ACBC derivative requires clusters larger than four units, exhibiting strong intermolecular H‐bonding patterns. A qualitative agreement is obtained for a tetramer, although the intensity enhancement is not reproduced. These results underline the sensitivity of VCD to the long‐range organisation in the crystal.  相似文献   

4.
Polarized ir spectra of oriented films of α‐helical poly(l ‐alanine) (α‐PLA) have been obtained as a function of residual solvent dichloroacetic acid (DCA). The amide A, B, II, and V regions exhibit multiple bands whose structure depends on the residual DCA content, and those associated with the αI‐PLA structure have been identified. A calculation of the relevant cubic anharmonic force constants indicates that, contrary to previous assignments, the overtone of amide II(A) is in Fermi resonance with the NH stretch fundamental, whose unperturbed frequency we now find to be at 3314 cm−1, significantly higher than the previously suggested 3279 cm−1. The presence of a structure in addition to the standard αI‐PLA is indicated by our analysis. © 1999 John Wiley & Sons, Inc. Biopoly 49: 195–207, 1999  相似文献   

5.
A partially-purified sample of hydrogenase from Methanobacterium thermoautotrophicum (delta H strain) has been investigated by optical absorption, magnetic circular dichroism and electron paramagnetic resonance spectroscopy. Variable temperature magnetic circular dichroism studies reveal, for the first time, the optical transitions associated with the Ni(III) center in the oxidized enzyme. Low temperature magnetic circular dichroism spectroscopy provides a new method of assessing both the coordination environment of Ni in hydrogenase and the appropriateness of inorganic model complexes.  相似文献   

6.
Circular dichroism (CD) spectroscopy is a widely‐used method for characterizing the secondary structures of proteins. The well‐established and highly used analysis website, DichroWeb (located at: http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) enables the facile quantitative determination of helix, sheet, and other secondary structure contents of proteins based on their CD spectra. DichroWeb includes a range of reference datasets and algorithms, plus graphical and quantitative methods for determining the quality of the analyses produced. This article describes the current website content, usage and accessibility, as well as the many upgraded features now present in this highly popular tool that was originally created nearly two decades ago.  相似文献   

7.
A study of the applicability of circular dichroism (CD) for the determination of drug levels in human serum is described and a new method for the quantitative determination of optically active absorbing drugs having Cotton effects at wavelengths above 250 nm in human serum and/or plasma is proposed. The principal advantages of this method are speed, economy, and simplicity, no derivatization or chromatographic separation steps being needed. The validity of the CD determination was confirmed by analysis of variance, β-lactam antibiotics being chosen as model drugs. In addition, the validation studies performed confirm the accuracy and precision of the proposed method. For β-lactam antibiotics lacking Cotton effects above 250 nm, an alternative method based on the extraction of the drug from serum is considered. Chirality 10:507–512, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Hu H  Elstner M  Hermans J 《Proteins》2003,50(3):451-463
We compare the conformational distributions of Ace-Ala-Nme and Ace-Gly-Nme sampled in long simulations with several molecular mechanics (MM) force fields and with a fast combined quantum mechanics/molecular mechanics (QM/MM) force field, in which the solute's intramolecular energy and forces are calculated with the self-consistent charge density functional tight binding method (SCCDFTB), and the solvent is represented by either one of the well-known SPC and TIP3P models. All MM force fields give two main states for Ace-Ala-Nme, beta and alpha separated by free energy barriers, but the ratio in which these are sampled varies by a factor of 30, from a high in favor of beta of 6 to a low of 1/5. The frequency of transitions between states is particularly low with the amber and charmm force fields, for which the distributions are noticeably narrower, and the energy barriers between states higher. The lower of the two barriers lies between alpha and beta at values of psi near 0 for all MM simulations except for charmm22. The results of the QM/MM simulations vary less with the choice of MM force field; the ratio beta/alpha varies between 1.5 and 2.2, the easy pass lies at psi near 0, and transitions between states are more frequent than for amber and charmm, but less frequent than for cedar. For Ace-Gly-Nme, all force fields locate a diffuse stable region around phi = pi and psi = pi, whereas the amber force field gives two additional densely sampled states near phi = +/-100 degrees and psi = 0, which are also found with the QM/MM force field. For both solutes, the distribution from the QM/MM simulation shows greater similarity with the distribution in high-resolution protein structures than is the case for any of the MM simulations.  相似文献   

9.
We have presented an extensive analysis of the peptide backbone dihedral angles in the PDB structures and computed experimental Ramachandran plots for their distributions seen under a various constraints on X‐ray resolution, representativeness at different sequence identity percentages, and hydrogen bonding distances. These experimental distributions have been converted into isoenergy contour plots using the approach employed previously by F. M. Pohl. This has led to the identification of energetically favored minima in the Ramachandran (? , ψ ) plots in which global minima are predominantly observed either in the right‐handed α‐helical or the polyproline II regions. Further, we have identified low energy pathways for transitions between various minima in the (? ,ψ ) plots. We have compared and presented the experimental plots with published theoretical plots obtained from both molecular mechanics and quantum mechanical approaches. In addition, we have developed and employed a root mean square deviation (RMSD) metric for isoenergy contours in various ranges, as a measure (in kcal.mol?1) to compare any two plots and determine the extent of correlation and similarity between their isoenergy contours. In general, we observe a greater degree of compatibility with experimental plots for energy maps obtained from molecular mechanics methods compared to most quantum mechanical methods. The experimental energy plots we have investigated could be helpful in refining protein structures obtained from X‐ray, NMR, and electron microscopy and in refining force field parameters to enable simulations of peptide and protein structures that have higher degree of consistency with experiments. Proteins 2017; 85:979–1001. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Kuo-Chen Chou 《Proteins》1995,21(4):319-344
The development of prediction methods based on statistical theory generally consists of two parts: one is focused on the exploration of new algorithms, and the other on the improvement of a training database. The current study is devoted to improving the prediction of protein structural classes from both of the two aspects. To explore a new algorithm, a method has been developed that makes allowance for taking into account the coupling effect among different amino acid components of a protein by a covariance matrix. To improve the training database, the selection of proteins is carried out so that they have (1) as many non-homologous structures as possible, and (2) a good quality of structure. Thus, 129 representative proteins are selected. They are classified into 30 α, 30 β, 30 α + β, 30 α/β, and 9 ζ (irregular) proteins according to a new criterion that better reflects the feature of the structural classes concerned. The average accuracy of prediction by the current method for the 4 × 30 regular proteins is 99.2%, and that for 64 independent testing proteins not included in the training database is 95.3%. To further validate its efficiency, a jackknife analysis has been performed for the current method as well as the previous ones, and the results are also much in favor of the current method. To complete the mathematical basis, a theorem is presented and proved in Appendix A that is instructive for understanding the novel method at a deeper level. © 1995 Wiley-Liss, Inc.  相似文献   

11.
We have synthesized both free and terminally-blocked peptide corresponding to the second helical region of the globular domain of normal human prion protein, which has recently gained the attention of structural biologists because of a possible role in the nucleation process and fibrillization of prion protein. The profile of the circular dichroism spectrum of the free peptide was that typical of alpha-helix, but was converted to that of beta-structure in about 16 h. Instead, below 2.1 x 10(-5) M, the spectrum of the blocked peptide exhibited a single band centered at 200 nm, unequivocally associated to random conformations, which did not evolve even after 24 h. Conformational preferences of this last peptide have been investigated as a function of temperature, using trifluoroethanol or low-concentration sodium dodecyl sulfate as alpha- or beta-structure inducers, respectively. Extrapolation of free energy data to zero concentration of structuring agent highlighted that the peptide prefers alpha-helical to beta-type organization, in spite of results from prediction algorithms. However, the free energy difference between the two forms, as obtained by a thermodynamic cycle, is subtle (roughly 5-8 kJ mol(-1) at any temperature from 280 K to 350 K), suggesting conformational ambivalence. This result supports the view that, in the prion protein, the structural behavior of the peptide is governed by the cellular microenvironment.  相似文献   

12.
On consideration that intrinsic structural weakness could affect the segment spanning the α2‐helical residues 173–195 of the PrP, we have investigated the conformational stabilities of some synthetic Ala‐scanned analogs of the peptide derived from the 180–195 C‐terminal sequence, using a novel approach whose theoretical basis originates from protein thermodynamics. Even though a quantitative comparison among peptides could not be assessed to rank them according to the effect caused by single amino acid substitution, as a general trend, all peptides invariably showed an appreciable preference for an α‐type organization, consistently with the fact that the wild‐type sequence is organized as an α‐helix in the native protein. Moreover, the substitution of whatever single amino acid in the wild‐type sequence reduced the gap between the α‐ and the β‐propensity, invariably enhancing the latter, but in any case this gap was larger than that evaluated for the full‐length α2‐helix‐derived peptide. It appears that the low β‐conformation propensity of the 180–195 region depends on the simultaneous presence of all of the Ala‐scanned residues, indirectly confirming that the N‐terminal 173–179 segment could play a major role in determining the chameleon conformational behavior of the entire 173–195 region in the PrP. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA‐mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis‐inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR‐A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma.  相似文献   

14.
15.
The protein conformation and orientation of Photosystem I (PS I) particles have been investigated by a combination of ultraviolet circular dichroism and polarized infrared spectroscopies. These PS I particles have been studied before and after reconstitution in phosphatidylcholine vesicles. The native state of the pigments of PS I was characterized by monitoring the low-temperature fluorescence emission spectra as well as the visible CD and linear dichroism spectra at room temperature. Computed analysis of the ultraviolet CD spectra of PS I complex indicates that the secondary structure of the protein is largely α-helical (52 ± 4%) with a very low amount of β-structure. Polarized infrared difference spectra of oriented PS I show a significant orientation of these α-helical segments with the α-helix axes tilted on the average at approx. 35° from the membrane normal.  相似文献   

16.
The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal growth promoter. Furthermore, incubations of monolayer cultures of hepatocytes with NE indicated that NE itself is rapidly reduced to 17α-ethyl-5β-estrane-3α,17β-diol (EED). In vivo tests confirmed that, after administration of either EES or NE, EED is excreted as a major metabolite. Therefore, it was concluded that, both in urine and faeces samples, EED can be used as a biological marker for the illegal use of EES and/or NE. Moreover, by monitoring EED in urine or faeces samples, the detection period after NE administration is significantly prolonged. These findings were further confirmed by three cases of norethandrolone abuse in a routine screening program for forbidden growth promoters.  相似文献   

17.
The maturation of connective tissue involves the organization of collagen fibres by resident fibroblasts. Fibroblast attachment to collagen has been demonstrated to involve cell surface receptors, integrins of the β1 family. Integrins are associated with cytoplasmic actin of microfilaments either directly or through focal adhesions. The major actin isoform of fibroblast microfilaments is β actin and to a lesser extent α smooth muscle (α SM) actin. Cultured human dermal fibroblasts derived from adult dermis, newborn foreskin or keloid scar were grown on either uncoated or collagen-coated surfaces. The expression and synthesis of both α2β1 integrin and α SM actin were followed by immunohistology and immunoprecipitation. Fibroblasts on uncoated surfaces expressed little α2β1 integrin on their surface, while 20 per cent of them demonstrated α SM actin within microfilaments. Fibroblasts grown on a collagen-coated surface minimally expressed α SM actin in microfilament structures and a majority of the cells were positive for α2β1 integrin on their membranes. Using [35S]-methionine incorporation and immunoprecipitation, it was shown that fibroblasts grown in uncoated dishes synthesized more α SM actin than fibroblasts grown on collagen-coated dishes. In contrast, fibroblasts grown on collagen coated dishes synthesized more α2β1 integrin compared to the same cells grown on uncoated dishes. Fibroblasts maintained on a type I collagen upregulate the expression and synthesis of α2β1 integrin, and downregulate the expression and synthesis of α SM actin. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution.  相似文献   

19.
Phosphorylation of eIF2α is an important strategy for living organisms to adapt to metabolic and physiological changes that are often associated with external stimuli. GCN2 is one of the well‐studied eIF2α kinases in yeast and mammals, which is responsible for the survival of the organism under amino acid starvation. Despite the downstream reactions being quite divergent, AtGCN2 exhibits a high primary sequence similarity to its yeast and animal counterparts. In this study, we provide experimental evidence to show that AtGCN2 shares similar biochemical properties to the yeast and animal homologues. Our in vitro assays demonstrate the binding of the C‐terminus of AtGCN2 to uncharged tRNA molecules and the enzymatic activities of AtGCN2 on both eIF2α homologues in A. thaliana, thus providing essential information for further understanding the functions of plant general control non‐repressible (GCN) homologues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号