首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Clostridium thermocellum strains were improved for ethanol tolerance, to 5% (v/v), by gradual adaptation and mutation. The best mutant gave an ethanol yield of 0.37 g/g substrate, with a growth yield 1.5 times more than its parent. Accumulation of acids and reducing sugars by the mutant strain with 5% (v/v) ethanol was lower than that of the parent strain with 1.5% (v/v) ethanol.  相似文献   

2.
The pyrolysis bio-oil from rice husk was upgraded in sub- and super-critical ethanol using HZSM-5 as catalyst. The results showed that super-critical upgrading process performed more effectively than sub-critical upgrading process. Acidic HZSM-5 facilitates esterification in super-critical ethanol to convert acids contained in crude bio-oil into various kinds of esters. Stronger acidic HZSM-5 (low Si/Al ratio) can facilitate cracking of heavy components of crude bio-oil more effectively in super-critical upgrading process. The residue of distillated upgraded bio-oil from super-critical upgrading process decreased evidently, compared with that of distillated crude bio-oil. This work proved that crude bio-oil can be effectively upgraded in super-critical upgrading process with the aid of acidic catalyst.  相似文献   

3.
Abstract

Alcoholic beverages are enjoyed together with meals worldwide, but their excessive intake is associated with an increased risk of various diseases. We investigated whether S-allyl-L-cysteine sulfoxide (ACSO), a sulfuric odor precursor of garlic, suppresses elevation in plasma ethanol concentration by accelerating ethanol metabolism and preventing ethanol absorption from the gut in rats. ACSO and garlic extract with a high ACSO content (Garlic-H) suppressed elevation in concentrations of ethanol and acetaldehyde in plasma and promoted the activities of alcohol dehydrogenase and aldehyde dehydrogenase. However, ACSO and Garlic-H did not affect plasma acetate so much. Furthermore, we examined the change in plasma ethanol concentration by injecting ACSO or Garlic-H into the ligated stomach or jejunum together with ethanol solution. ACSO and Garlic-H suppressed the absorption of ethanol from the stomach and jejunum, but suppression in the jejunum was less than in the stomach. In conclusion, ACSO inhibits ethanol absorption and accelerates ethanol metabolism.  相似文献   

4.
Genetically engineered Escherichia coli KO11 is capable of efficiently producing ethanol from all sugar constituents of lignocellulose but lacks the high ethanol tolerance of yeasts currently used for commercial starch-based ethanol processes. Using an enrichment method which selects alternatively for ethanol tolerance during growth in broth and for ethanol production on solid medium, mutants of KO11 with increased ethanol tolerance were isolated which can produce more than 60 g ethanol L−1 from xylose in 72 h. Ethanol concentrations and yields achieved by the LY01 mutant with xylose exceed those reported for recombinant strains of Saccharomyces and Zymomonas mobilis, both of which have a high native ethanol tolerance. Received 18 September 1997/ Accepted in revised form 07 January 1998  相似文献   

5.
6.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

7.
The maximum ethanol concentration produced from glucose in defined media at 45°C by the thermotolerant yeast Kluyveromyces marxianus IMB3 was 44 g L−1. Acclimatisation of the strain through continuous culture at ethanol concentrations up to 80 g L−1, shifted the maximum ethanol concentration at which growth was observed from 40 g L−1 to 70 g L−1. Four isolates were selected from the continuous culture, only one of which produced a significant increase in final ethanol concentration (50 ± 0.4 g L−1), however in subsequent fermentations, following storage on nutrient agar plates, the maximum ethanol concentration was comparable with the original isolate. The maximum specific ethanol production rates (approximately 1.5 g (gh)−1) were also comparable with the original strain except for one isolate (0.7 g (gh)−1). The specific ethanol productivity decreased with ethanol concentration; this decrease correlated linearly (rval 0.92) with cell viability. Due to the transience of induced ethanol tolerance in the strain it was concluded that this was not a valid method for improving final ethanol concentrations or production rates. Received 18 July 1997/ Accepted in revised form 19 February 1998  相似文献   

8.
When 4% (v/v) ethanol was added progressively to two strains exhibiting different fermentative abilities, K1 (a commercial wine strain) and V5 (a strain derived of a wine yeast), the fermentation rate correlated directly to the ethanol concentration for both strains. In contrast, the effect of sudden addition of 2%, 4% or 6% (v/v) ethanol was different depending on the strain. While the same effect was observed for K1 whatever the way of ethanol addition, V5 required an adaptation period after the shock addition of ethanol.  相似文献   

9.
Drinking in the dark (DID) is a limited access ethanol‐drinking phenotype in mice. High Drinking in the Dark (HDID‐1) mice have been bred for 27 selected generations (S27) for elevated blood ethanol concentrations (BECs) after a 4‐h period of access to 20% ethanol. A second replicate line (HDID‐2) was started later from the same founder population and is currently in S20. An initial report of response to selection in HDID‐1 was published after S11. This article reports genetic and behavioral characteristics of both lines in comparison with the HS controls. Heritability is low in both replicates (h2 = 0.09) but the lines have shown 4–5 fold increases in BEC since S0; 80% of HDID‐1 and 60% of HDID‐2 mice reach BECs greater than 1.0 mg/ml. Several hours after a DID test, HDID mice show mild signs of withdrawal. Although not considered during selection, intake of ethanol (g/kg) during the DID test increased by approximately 80% in HDID‐1 and 60% in HDID‐2. Common genetic influences were more important than environmental influences in determining the similarity between BEC and intake for HDID mice. Analysis of the partitioning of intake showed that 60% of intake is concentrated in the last 2 h of the 4 h session. However, this has not changed during selection. Hourly BECs during the DID test reach peak levels after 3 or 4 h of drinking. HDID mice do not differ from HS mice in their rate of elimination of an acute dose of alcohol .  相似文献   

10.
CO2气载乙醇固态发酵分离耦合过程的初步研究   总被引:1,自引:0,他引:1  
固态乙醇发酵中高浓度产物乙醇和发酵温度升高对酵母的抑制作用严重地制约了发酵的性能。本研究以固态基质材料发酵乙醇,利用发酵过程中由酵母产生的CO2作为循环载气,将载气在冷凝器中冷却分离乙醇与气体,降温后的CO2重新加压返回固态基质反应器中,及时有效的除去产物乙醇,并能使固态基质反应器的温度有一定程度的降低,解除了两者的抑制,提高了发酵效率,从而为解决大规模固体厌氧发酵温度的控制问题提供了工艺路线。  相似文献   

11.
纤维素在不同介质中的吸附碱的研究   总被引:1,自引:0,他引:1  
文中研究了纤维素在不同介质(水、乙醇、吡啶及N,N-二甲基乙酰胺)中吸附碱测定情况并通过对比总结出了纤维素对氢氧化钠随用碱量及介质变化规律:纤维素的吸附碱量随着介质及用碱量不同而有所变化,用水作碱化介质比用有机溶剂/水作碱化介质时的吸附碱量少;在用有机溶剂/水作碱化介质时,纤维素对碱吸附表现出大致相同的变化趋势。  相似文献   

12.
针对海带的碳水化合物不易被单一菌株发酵转化为乙醇的难题,通过酸化、匀浆和消化等预处理和正交试验,利用多酶系多菌种微生物复合发酵剂的酿酒曲,研究海带发酵制取生物乙醇的影响因素与优化条件。结果表明:在预处理试验中,加入一定量的Na2CO3,可以提高海带液中还原性糖和总糖的含量;消化温度对总糖影响相对较大,而对还原性糖的影响较小;过滤不利于得到较高浓度的乙醇;在优化条件中,发酵液的初始酸碱度是最重要的,其次是发酵温度和基质浓度,发酵液体积的影响程度相对较小。在基质(海带)质量浓度为0.15 g/L、温度34℃、起始pH 6.5和发酵液体积200 mL时,可以获得最大的乙醇产量4.09 g(以100 g海带计)。  相似文献   

13.
Light to moderate drinking in humans lowers the risk of coronary heart disease and may lower blood pressure. We examined the effect of chronic low daily alcohol consumption on blood pressure, platelet cytosolic free calcium [Ca2+]i, tissue aldehyde conjugates and renal vascular changes in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). We also examined the effects of the same weekly amount of alcohol consumption over a one day period each week simulating weekend drinking in humans. Animals, age 7 weeks, were divided into six groups of six animals each and were treated as follows: WKY and SHR control, normal drinking water; WKY and SHR, 0.5% ethanol in drinking water; WKY and SHR, 3.5% ethanol in drinking water one day/week. After 14 weeks systolic blood pressure, platelet [Ca2+]i, liver, kidney and aortic aldehyde conjugates were significantly higher (p < 0.05) in untreated SHRs as compared to untreated WKYs. Daily 0.5% ethanol consumption in SHRs significantly (p < 0.05) attenuated these changes and also attenuated smooth muscle cell hyperplasia and narrowing of the lumen in small arteries and arterioles of the kidney. WKY rats treated with 0.5% ethanol had lower aldehyde conjugates without any significant effect on blood pressure and platelet [Ca2+]i as compared to WKY controls. Consumption of 3.5% ethanol one day/week did not affect blood pressure and associated changes in normotensive WKY rats or hypertensive SHRs as compared to their respective controls. These results suggest that chronic daily low ethanol intake lowers blood pressure in SHRs by lowering tissue aldehyde conjugates and cytosolic free calcium.  相似文献   

14.
Two Saccharomyces cerevisiae strains with different degrees of ethanol tolerance adapted differently to produced ethanol. Adaptation in the less ethanol-tolerant strain was high and resulted in a reduced formation of ethanol-induced respiratory deficient mutants and an increased ergosterol content of the cells. Adaptation in the more ethanol-tolerant strain was less pronounced. Journal of Industrial Microbiology & Biotechnology (2000) 24, 75–78. Received 22 June 1999/ Accepted in revised form 06 October 1999  相似文献   

15.
The dissociation of wheat glutenin into subunits was observed by treatment with a small amount of mercuric chloride under moderate conditions, suggesting that the cleavage of inter-polypeptide chain disulfide bonds in the glutenin might occur. The dissociation into the subunits was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. The electrophoretic patterns of the glutenin treated with mercuric chloride were essentially similar to those of the glutenin treated with 2-mercaptoethanol. Silver nitrate also had the same effects as mercuric chloride, and p-chloromercuribenzoate and N-ethylmaleimide showed no effect on the dissociation of the glutenin. Complete dissociation was achieved when the glutenin solution containing 0.5% SDS and 0.01 m phosphate buffer (pH 7.0) was incubated with 10?3 m mercuric chloride (about four moles per mole of disulfide groups) at 30°C for 20 hr. Partial dissociation was also observed after 30 min incubation. Increasing temperature and SDS concentration promoted the rate of the dissociation of the glutenin by mercuric chloride.  相似文献   

16.
In a medium containing 40 g ethanol l–1, laccase production by Trametes versicolor was 2.6 unit per ml of the supernatant, which was over 20 times higher than that without ethanol. Laccase activity with ethanol was quite comparable to that with the well-known inducers such as veratryl alcohol, xylidine and guaiacol. With other white-rot fungi, Coriolus hirsutus and Grifola frondosa, ethanol had a similar stimulatory effect on laccase production.  相似文献   

17.
Thermoanaerobacter ethanolicus is an extreme thermophilic non-spore forming ethanol-producing anaerobic bacterium. Minimum nutrient requirements and optimum growth conditions have been established. An optimum yeast extract-glucose ratio for ethanol yield has also been determined. Initial medium pH, optimally 7.5–8.0, significantly affected the amount of ethanol formed. Maximum specific growth rate was found to be 0.22 h?1at pH 7.5 and 69°C. Ethanol concentration up to 11 g l?1at pH 7.5 and 69°C was used to characterize ethanol inhibition. The growth kinetics of T. ethanolicus were characterized in terms of environmental parameters. Substrate utilization, ethanol formation and inhibition by both sugar and ethanol were also quantified.  相似文献   

18.
The ethanol industry is growing in response to increased consumer demands for fuel as well as the renewable fuel standard. Corn ethanol processing creates the following products: 1/3 ethanol, 1/3 distillers grains, and 1/3 carbon dioxide. As the production of ethanol increases so does the generation of its coproducts, and viable uses continually need to be developed. A survey was mailed to operational US ethanol plants to determine current practices. It inquired about processes, equipment used, end products, and desired future directions for coproducts. Results indicated that approximately one-third of plant managers surveyed expressed a willingness to alter current drying time and temperature if it could result in a higher quality coproduct. Other managers indicated hesitation, based on lack of economic incentives, potential cost and return, and capital required. Respondents also reported the desire to use their coproducts in some of the following products: fuels, extrusion, pellets, plastics, and human food applications. These results provide a snapshot of the industry, and indicate that operational changes to the current production of DDGS must be based upon the potential for positive economic returns.  相似文献   

19.
Aims: To develop a high‐throughput assay for screening xylose‐utilizing and ethanol‐tolerant thermophilic bacteria owing to their abilities to be the promising ethanologens. Methods and Results: Based on alcohol oxidase and peroxidase‐coupled enzymatic reaction, an assay was developed by the formation of the coloured quinonimine to monitor the oxidation of ethanol in the reaction and calculate the concentration of ethanol. This assay was performed in 96‐well microtitre plate in a high‐throughput and had a well‐linear detection range of ethanol from 0 up to 2·5 g l?1 with high accuracy. The assay was then verified by screening soil samples from hot spring for xylose‐utilizing and ethanol production at 60°C. Three isolates LM14‐1, LM14‐5 and LM18‐4 with 3–5% (v/v) ethanol tolerance and around 0·29–0·38 g g?1 ethanol yield from xylose were obtained. Phylogenetic and phenotypic analysis showed that the isolates clustered with members of the genus Bacillus or Geobacillus subgroup. Conclusions: The developed double enzyme‐coupled, high‐throughput screening system is effective to screen and isolate xylose‐utilizing, ethanol‐producing thermophilic bacteria for bioethanol production at the elevated temperature. Significance and Impact of the Study: Our research presented a novel high‐throughput method to screen thermophilic bacteria for producing ethanol from xylose. This screening method is also very useful to screen all kinds of ethanologens either from natural habitats or from mutant libraries, to improve bioethanol production from lignocellulosic feedstocks.  相似文献   

20.
Levels of RNA, mRNA and separation of ribosomal proteins from control and ethanol treated rat liver, showed no change in total RNA content, but poly(A+)mRNA was reduced significantly in ethanolic rats. Ribosomal proteins S2, S3a, S3b, S4, L3, L4, L4a, L10a and L15 were found substantially reduced in experimental rat livers. This study suggests decrease in poly(A+) mRNA coupled with loss of ribosomal proteins must be responsible for decreased protein synthesis in chronic alcoholism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号