首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human bone marrow mesenchymal stem cells (hBMSCs) are widely used cell source for clinical bone regeneration. Achieving the greatest therapeutic effect is dependent on the osteogenic differentiation potential of the stem cells to be implanted. However, there are still no practical methods to characterize such potential non-invasively or previously. Monitoring cellular morphology is a practical and non-invasive approach for evaluating osteogenic potential. Unfortunately, such image-based approaches had been historically qualitative and requiring experienced interpretation. By combining the non-invasive attributes of microscopy with the latest technology allowing higher throughput and quantitative imaging metrics, we studied the applicability of morphometric features to quantitatively predict cellular osteogenic potential. We applied computational machine learning, combining cell morphology features with their corresponding biochemical osteogenic assay results, to develop prediction model of osteogenic differentiation. Using a dataset of 9,990 images automatically acquired by BioStation CT during osteogenic differentiation culture of hBMSCs, 666 morphometric features were extracted as parameters. Two commonly used osteogenic markers, alkaline phosphatase (ALP) activity and calcium deposition were measured experimentally, and used as the true biological differentiation status to validate the prediction accuracy. Using time-course morphological features throughout differentiation culture, the prediction results highly correlated with the experimentally defined differentiation marker values (R>0.89 for both marker predictions). The clinical applicability of our morphology-based prediction was further examined with two scenarios: one using only historical cell images and the other using both historical images together with the patient''s own cell images to predict a new patient''s cellular potential. The prediction accuracy was found to be greatly enhanced by incorporation of patients'' own cell features in the modeling, indicating the practical strategy for clinical usage. Consequently, our results provide strong evidence for the feasibility of using a quantitative time series of phase-contrast cellular morphology for non-invasive cell quality prediction in regenerative medicine.  相似文献   

2.
Precise quantification of cellular potential of stem cells, such as human bone marrow–derived mesenchymal stem cells (hBMSCs), is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1) the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2) predictions of potentials are generated before differentiation cultures are initiated; (3) prediction of multiple potentials can be provided simultaneously for each sample; and (4) predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic) and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21) and cytoskeleton-related genes (PTK2, CD146, and CD49) already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature conversion method for objective potential prediction, but should also allow clinicians to choose the most practical morphology-based prediction method for their own purposes.  相似文献   

3.
Objectives: For reasons of provision of highly‐specific surface area and three‐dimensional culture, microcarrier culture (MC) has garnered great interest for its potential to expand anchorage‐dependent stem cells. This study utilizes MC for in vitro expansion of human bone marrow mesenchymal stem cells (BMMSCs) and analyses its effects on BMMSC proliferation and differentiation. Materials and methods: Effects of semi‐continuous MC compared to control plate culture (PC) and serial bead‐to‐bead transfer MC (MC bead‐T) on human BMMSCs were investigated. Cell population growth kinetics, cell phenotypes and differentiation potential of cells were assayed. Results: Maximum cell density and overall fold increase in cell population growth were similar between PCs and MCs with similar starting conditions, but lag period of BMMSC growth differed substantially between the two; moreover, MC cells exhibited reduced granularity and higher CXCR4 expression. Differentiation of BMMSCs into osteogenic and adipogenic lineages was enhanced after 3 days in MC. However, MC bead‐T resulted in changes in cell granularity and lower osteogenic and adipogenic differentiation potential. Conclusions: In comparison to PC, MC supported expansion of BMMSCs in an up‐scalable three‐dimensional culture system using a semi‐continuous process, increasing potential for stem cell homing ability and osteogenic and adipogenic differentiation.  相似文献   

4.
Caveolin‐1 is a scaffolding protein of cholesterol‐rich caveolae lipid rafts in the plasma membrane. In addition to regulating cholesterol transport, caveolin‐1 has the ability to bind a diverse array of cell signaling molecules and regulate cell signal transduction in caveolae. Currently, there is little known about the role of caveolin‐1 in stem cells. It has been reported that the caveolin‐1 null mouse has an expanded population of cells expressing stem cell markers in the gut, mammary gland, and brain, suggestive of a role for caveolin‐1 in stem cell regulation. The caveolin‐1 null mouse also has increased bone mass and an increased bone formation rate, and its bone marrow‐derived mesenchymal stem cells (MSCs) have enhanced osteogenic potential. However, the role of caveolin‐1 in human MSC osteogenic differentiation remains unexplored. In this study, we have characterized the expression of caveolin‐1 in human bone marrow derived MSCs. We show that caveolin‐1 protein is enriched in density gradient‐fractionated MSC plasma membrane, consisting of ~100 nm diameter membrane‐bound vesicles, and is distributed in a punctate pattern by immunofluoresence localization. Expression of caveolin‐1 increases in MSCs induced to undergo osteogenic differentiation, and siRNA‐mediated knockdown of caveolin‐1 expression enhances MSC proliferation and osteogenic differentiation. Taken together, these findings suggest that caveolin‐1 normally acts to regulate the differentiation and renewal of MSCs, and increased caveolin‐1 expression during MSC osteogenesis likely acts as a negative feedback to stabilize the cell phenotype. J. Cell. Biochem. 113: 3773–3787, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Two‐dimensional (2D) cell cultures have been extensively used to investigate stem cell biology, but new insights show that the 2D model may not properly represent the potential of the tissue of origin. Conversely, three‐dimensional cultures exhibit protein expression patterns and intercellular junctions that are more representative of their in vivo condition. Multiclonal cells that grow in suspension are defined as “spheroids,” and we have previously demonstrated that spheroids from adipose‐derived stem cells (S‐ASCs) displayed enhanced regenerative capability. With the current study, we further characterized S‐ASCs to further understand the molecular mechanisms underlying their stemness properties. Recent studies have shown that microRNAs (miRNAs) are involved in many cellular mechanisms, including stemness maintenance and proliferation, and adipose stem cell differentiation. Most studies have been conducted to identify a specific miRNA profile on adherent adipose stem cells, although little is still known about S‐ASCs. In this study, we investigate for the first time the miRNA expression pattern in S‐ASCs compared to that of ASCs, demonstrating that cell lines cultured in suspension show a typical miRNA expression profile that is closer to the one reported in induced pluripotent stem cells. Moreover, we have analyzed miRNAs that are specifically involved in two distinct moments of each differentiation, namely early and late stages of osteogenic, adipogenic, and chondrogenic lineages during long‐term in vitro culture. The data reported in the current study suggest that S‐ASCs have superior stemness features than the ASCs and they represent the true upstream stem cell fraction present in adipose tissue, relegating their adherent counterparts.  相似文献   

6.
Osteogenesis and the production of composite osteochondral tissues were investigated using human adult adipose‐derived stem cells and polyglycolic acid (PGA) mesh scaffolds under dynamic culture conditions. For osteogenesis, cells were expanded with or without osteoinduction factors and cultured in control or osteogenic medium for 2 weeks. Osteogenic medium enhanced osteopontin and osteocalcin gene expression when applied after but not during cell expansion. Osteogenesis was induced and mineralized deposits were present in tissues produced using PGA culture in osteogenic medium. For development of osteochondral constructs, scaffolds seeded with stem cells were precultured in either chondrogenic or osteogenic medium, sutured together, and cultured in dual‐chamber stirred bioreactors containing chondrogenic and osteogenic media in separate compartments. After 2 weeks, total collagen synthesis was 2.1‐fold greater in the chondroinduced sections of the composite tissues compared with the osteoinduced sections; differentiation markers for cartilage and bone were produced in both sections of the constructs. The results from the dual‐chamber bioreactor highlight the challenges associated with achieving simultaneous chondrogenic and osteogenic differentiation in tissue engineering applications using a single stem‐cell source. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

7.
8.
We have used cytokine protein array to analyze the secretion of cytokines from an osteoblastic clone derived from human umbilical cord blood mesenchymal stem cells (MSCs) cultured in an osteogenic differentiation medium. The analysis demonstrated the unexpected ability of osteoblast committed cells and their early progenitors to produce significant amounts of a range of soluble immune mediators without in vitro exposure to clinically relevant bacterial pathogens. The cells were expanded and their osteogenic potential analyzed over 45 days of culture was revealed by the expression of osteoblast-specific markers (alkaline phosphatase and Runx2), and by matrix mineralization. Over this culture period, the cells secreted particularly high levels of IL-8, MCP-1 and VEGF, but did not express IL-2, IL-7, IL-17, eotaxin, G-CSF and IFN-gamma. These findings should encourage the use of human umbilical cord blood as a potential stem cells source for bone regeneration.  相似文献   

9.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

10.
Critical size bone defects and non‐union fractions are still challenging to treat. Cell‐loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor‐made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L‐lactide‐co‐caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.  相似文献   

11.
Scaffolds porosity has an important role in in vitro and in vivo differentiation process of stem cells with given the amount of space available to the cells to proliferate and differentiate. In the present study, chitosan with three porosities including 10%, 15%, and 20% that created by gelatin were used for investigation of the proliferation and osteogenic differentiation potential of adipose‐derived stem cells (ADSCs). In order to be more like the scaffold to natural bone tissue, freeze‐drying method was used in the scaffold preparation. Scaffold morphology, cell attachment, and toxicity were evaluated using scanning electron microscopy and MTT assay. Then, osteogenic differentiation potential of ADSCs cultured on chitosan with different porosities was evaluated by common osteogenic markers such as Alizarin red staining, ALP activity, calcium content, and osteogenic‐related genes expression via real‐time RT‐PCR. Although all scaffolds supported the proliferation and differentiation of ADSCs, but 10% scaffold demonstrated higher amount of osteogenic markers in comparison with the other porosities and control groups. Taking together, it can be concluded that osteogenic differentiation well done in the scaffolds with lower porosity because density of the cells will increase by forcing resulted from the scaffold, so osteogenic differentiation of the stem cells have an inverse association with scaffold porosity. J. Cell. Biochem. 119: 625–633, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
The mechanisms underlying the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) remain unclear. In the present study, we aimed to identify the key biological processes during osteogenic differentiation. To this end, we downloaded three microarray data sets from the Gene Expression Omnibus (GEO) database: GSE12266, GSE18043 and GSE37558. Differentially expressed genes (DEGs) were screened using the limma package, and enrichment analysis was performed. Protein‐protein interaction network (PPI) analysis and visualization analysis were performed with STRING and Cytoscape. A total of 240 DEGs were identified, including 147 up‐regulated genes and 93 down‐regulated genes. Functional enrichment and pathways of the present DEGs include extracellular matrix organization, ossification, cell division, spindle and microtubule. Functional enrichment analysis of 10 hub genes showed that these genes are mainly enriched in microtubule‐related biological changes, that is sister chromatid segregation, microtubule cytoskeleton organization involved in mitosis, and spindle microtubule. Moreover, immunofluorescence and Western blotting revealed dramatic quantitative and morphological changes in the microtubules during the osteogenic differentiation of human adipose‐derived stem cells. In summary, the present results provide novel insights into the microtubule‐ and cytoskeleton‐related biological process changes, identifying candidates for the further study of osteogenic differentiation of the mesenchymal stem cells.  相似文献   

13.
Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF(165/121) antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair.  相似文献   

14.
There is a major medical need for developing novel and effective approaches for repairing non‐union and critical‐sized bone defects. Although the mechanisms remain to be determined, it is known that inflammation plays a crucial role in initiating bone repair and regeneration. This study investigated the effect of short‐term (3 days) preconditioning with tumor necrosis factor‐alpha (TNF‐α) on proliferation, mobilization, and differentiation of adipose tissue‐derived mesenchymal stem cells (ASCs). We demonstrated that TNF‐α pre‐conditioning increased proliferation, mobilization, and osteogenic differentiation of ASCs and up‐regulated bone morphogenetic protein‐2 (BMP‐2) protein level. BMP‐2 silencing by siRNA partially inhibited osteogenic differentiation of ASCs induced by TNF‐α; BMP‐2 pre‐conditioning also significantly increased osteogenic differentiation of ASCs but the effects were significantly smaller than those observed for TNF‐α preconditioning. Furthermore, TNF‐α treatment promoted extracellular‐signal‐regulated kinases(Erk)1/2 and p38 mitogen‐activated protein kinase (MAPK) signaling pathways, but only Erk1/2 inhibition reduced the BMP‐2 levels and osteogenic differentiation induced by TNF‐α preconditioning. Together, these results support the hypothesis that inflammation contributes to bone regeneration by promoting proliferation, mobilization, and osteogenic differentiation of ASCs; 3 days of TNF‐α preconditioning, mimicking the short boost of inflammation normally occurring after bone injury, might serve as a feasible approach for directing stem cells into osteogenic differentiation. J. Cell. Physiol. 9999: XX–XX, 2013. © 2013 Wiley Periodicals, Inc. J. Cell. Physiol. 228: 1737–1744, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
Human mesenchymal stem cells (MSC) from adult and fetal tissues are promising candidates for cell therapy but there is a need to identify the optimal source for bone regeneration. We have previously characterized MSC populations in first trimester fetal blood, liver, and bone marrow and we now evaluate their osteogenic differentiation potential in comparison to adult bone marrow MSC. Using quantitative real-time RT-PCR, we demonstrated that 16 osteogenic-specific genes (OC, ON, BSP, OP, Col1, PCE, Met2A, OPG, PHOS1, SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were expressed in both fetal and adult MSC under basal conditions and were up-regulated under osteogenic conditions both in vivo and during an in vitro 21-day time-course. However, under basal conditions, fetal MSC had higher levels of osteogenic gene expression than adult MSC. Upon osteogenic differentiation, fetal MSC produced more calcium in vitro and reached higher levels of osteogenic gene up-regulation in vivo and in vitro. Second, we observed a hierarchy within fetal samples, with fetal bone marrow MSC having greater osteogenic potential than fetal blood MSC, which in turn had greater osteogenic potential than fetal liver MSC. Finally, we found that the level of gene expression under basal conditions was positively correlated with both calcium secretion and gene expression after 21 days in osteogenic conditions. Our findings suggest that stem cell therapy for bone dysplasias such as osteogenesis imperfecta may benefit from preferentially using first trimester fetal blood or bone marrow MSC over fetal liver or adult bone marrow MSC.  相似文献   

17.
Human dental pulp is a promising alternative source of stem cells for cell-based tissue engineering in regenerative medicine, for the easily recruitment with low invasivity for the patient and for the self-renewal and differentiation potential of cells. So far, in vitro culture of mesenchymal stem cells is usually based on supplementing culture and differentiation media with foetal calf serum (FCS). FCS is known to contain a great quantity of growth factors, and thus to promote cell attachment on plastic surface as well as expansion and differentiation. Nevertheless, FCS as an animal origin supplement may represent a potential means for disease transmission besides leading to a xenogenic immune response. Therefore, a significant interest is focused on investigating alternative supplements, in order to obtain a sufficient cell number for clinical application, avoiding the inconvenients of FCS use. In our study we have demonstrated that human serum (HS) is a suitable alternative to FCS, indeed its addition to culture medium induces a high hDPSCs proliferation rate and improves the in vitro osteogenic differentiation. Furthermore, hDPSCs-collagen constructs, pre-differentiated with HS-medium in vitro for 10 days, when implanted in immunocompromised rats, are able to restore critical size parietal bone defects. Therefore these data indicate that HS is a valid substitute for FCS to culture and differentiate in vitro hDPSCs in order to obtain a successful bone regeneration in vivo.  相似文献   

18.
Mesenchymal stem cells are good candidates for the clinical application of bone repair because of their osteogenic differentiation potential, but in vivo osteoinduction potential should be verified for culture expanded cells before clinical application. This study analyzed in vivo bone formation by MSCs quantitatively after implantation of MSCs planted porous biphasic ceramic cubes into athymic mice. MSCs were divided into osteogenic differentiation-induced and normal groups and also tested in vitro to evaluate the degree of differentiation into osteoblasts. The osteogenic induced group showed higher alkaline phosphatase and calcium level in vitro and corresponding higher level of bone formation in vivo compared to control group. Whereas there was no bone formation observed in fibroblast-implanted negative control group. In critical sized bone defect models, commonly used for evaluation of bone regeneration ability, it is difficult to distinguish between osteoinduction and osteoconduction, and quantitative analysis is not simple. However, this method for evaluating osteoinduction is both accurate and simple. In conclusion, the analysis of in vivo bone formation using porous ceramic cubes is a powerful and simple method for evaluating the osteoinduction ability of target cells and, furthermore, can be applied for evaluation of scaffolds for their osteoinductive properties.  相似文献   

19.
20.
Multipotent stem cells derived from periodontal ligaments (PDLSC) and pulp of human exfoliated deciduous teeth (SHED) represent promising cell sources for bone regeneration. Recent studies have demonstrated that retinoic acid (RA) and dexamethasone (Dex) induce osteogenesis of postnatal stem cells. The objective of this study was to examine the effects of RA and Dex on the proliferation and osteogenic differentiation of SHED and PDLSC and to compare the osteogenic characteristics of SHED and PDLSC under RA treatment. SHED and PDLSC were treated with serum-free medium either alone or supplemented with RA or Dex for 21 days. The proliferation of SHED and PDLSC was significantly inhibited by both RA and Dex. RA significantly upregulated gene expression and the activity of alkaline phosphatase in SHED and PDLSC. Positive Alizarin red and von Kossa staining of calcium deposition was seen on the RA-treated SHED and PDLSC after 21 days of culture. The influences of RA on the osteogenic differentiation of SHED and PDLSC were significantly stronger than with Dex. Supplemention with insulin enhanced RA-induced osteogenic differentiation of SHED. Thus, RA is an effective inducer of osteogenic differentiation of SHED and PDLSC, whereas RA treatment in combination with insulin supplementation might be a better option for inducing osteogenic differentiation. Significantly higher cell proliferation of PDLSC results in greater calcium deposition after 3-week culture, suggesting that PDLSC is a better osteogenic stem cell source. This study provides valuable information for efficiently producing osteogenically differentiated SHED or PDLSC for in vivo bone regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号