首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Bacterial microcompartments (MCPs) are subcellular organelles that are composed of a protein shell and encapsulated metabolic enzymes. It has been suggested that MCPs can be engineered to encapsulate protein cargo for use as in vivo nanobioreactors or carriers for drug delivery. Understanding the stability of the MCP shell is critical for such applications. Here, we investigate the integrity of the propanediol utilization (Pdu) MCP shell of Salmonella enterica over time, in buffers with various pH, and at elevated temperatures. The results show that MCPs are remarkably stable. When stored at 4°C or at room temperature, Pdu MCPs retain their structure for several days, both in vivo and in vitro. Furthermore, Pdu MCPs can tolerate temperatures up to 60°C without apparent structural degradation. MCPs are, however, sensitive to pH and require conditions between pH 6 and pH 10. In nonoptimal conditions, MCPs form aggregates. However, within the aggregated protein mass, MCPs often retain their polyhedral outlines. These results show that MCPs are highly robust, making them suitable for a wide range of applications.  相似文献   

2.
    
Bacterial microcompartments are large supramolecular structures comprising an outer proteinaceous shell that encapsulates various enzymes in order to optimize metabolic processes. The outer shells of bacterial microcompartments are made of several thousand protein subunits, generally forming hexameric building blocks based on the canonical bacterial microcompartment (BMC) domain. Among the diverse metabolic types of bacterial microcompartments, the structures of those that use glycyl radical enzymes to metabolize choline have not been adequately characterized. Here, six structures of hexameric shell proteins from type I and type II choline-utilization microcompartments are reported. Sequence and structure analysis reveals electrostatic surface properties that are shared between the four types of shell proteins described here.  相似文献   

3.
    
Sub‐cellular compartments create specialized reaction chambers in eukaryotes. These compartments provide favorable micro‐environments for many metabolic processes. Recently, metabolic engineers have explored the concept of pathway compartmentalization to enhance the performance of metabolic pathways. This strategy offers many unique advantages, including (i) increased local concentrations of enzymes and substrates, (ii) accessing alternate substrate pools, (iii) separation from competing reactions, and (iv) isolation of harmful intermediates or conditions needed for the pathway. In this review, the method of localizing metabolic pathways into specific organelles as well as the benefits of pathway compartmentalization in terms of enhancing the production of value‐added chemicals is discussed.  相似文献   

4.
Melanosomes and lysosomes share structural and biosynthetic properties. Three mouse pigment mutants, ruby-eye, ruby-eye-2-J, and maroon, have abnormally high concentrations of kidney lysosomal enzymes. Concentrations of kidney nonlysosomal enzymes and of liver and serum lysosomal enzymes are normal. By light microscopy the mutants have normal kidney lysosome morphology. It does not appear that the mutant genes cause an increased rate of production of lysosomes since the increased kidney -glucuronidase concentration is not accompanied by a corresponding increase in rate of synthesis. The common defect in all mutants is a decreased rate of secretion of lysosomal enzymes from kidney into urine. Eight mouse pigment mutants are now known which affect both melanosome and lysosome function. They should serve as useful models for the study of the biogenesis, structure, and processing of these and other subcellular organelles.This work was supported in part by United States Public Health Service Research Grant GM-19521 and by National Science Foundation Grant PCM77-24804. E. K. N. was supported in part by United States Public Health Service Grant GM07093-03. F. W. was a high school student in the summer program supported by National Science Foundation Grant SP177-26980.  相似文献   

5.
In plants, the enzymes for cysteine synthesis serine acetyltransferase (SAT) and O-acetylserine-(thiol)-lyase (OASTL) are present in the cytosol, plastids and mitochondria. However, it is still not clearly resolved to what extent the different compartments are involved in cysteine biosynthesis and how compartmentation influences the regulation of this biosynthetic pathway. To address these questions, we analysed Arabidopsis thaliana T-DNA insertion mutants for cytosolic and plastidic SAT isoforms. In addition, the subcellular distribution of enzyme activities and metabolite concentrations implicated in cysteine and glutathione biosynthesis were revealed by non-aqueous fractionation (NAF). We demonstrate that cytosolic SERAT1.1 and plastidic SERAT2.1 do not contribute to cysteine biosynthesis to a major extent, but may function to overcome transport limitations of O-acetylserine (OAS) from mitochondria. Substantiated by predominantly cytosolic cysteine pools, considerable amounts of sulphide and presence of OAS in the cytosol, our results suggest that the cytosol is the principal site for cysteine biosynthesis. Subcellular metabolite analysis further indicated efficient transport of cysteine, γ -glutamylcysteine and glutathione between the compartments. With respect to regulation of cysteine biosynthesis, estimation of subcellular OAS and sulphide concentrations established that OAS is limiting for cysteine biosynthesis and that SAT is mainly present bound in the cysteine–synthase complex.  相似文献   

6.
7.
异胡豆苷合成酶(strictosidine synthase,STR)是吲哚生物碱生物合成的一种关键酶,将色胺(tryptamine)和裂环马钱子(secologanin)耦合成为吲哚生物碱的前体化合物异胡豆苷.将异胡豆苷合成酶标定在烟草植物不同的亚细胞区室--叶绿体、液泡和内质网中表达,通过蛋白免疫印迹分析和STR酶活性的测定,表明STR在叶绿体、液泡和内质网中有效表达.STR体外酶活性分析采用间接荧光法检测色胺在反应体系的消耗.STR的酶活性分析表明了STR在烟草中不同的亚细胞区室得以活性表达.分离纯化转基因烟草的叶绿体,通过对其分离的不同部分的蛋白免疫印迹分析,确定了将STR正确标定在烟草的叶绿体中表达.  相似文献   

8.
异胡豆苷合成酶在烟草亚细胞区室的表达(英)   总被引:2,自引:0,他引:2  
异胡豆苷合成酶 (strictosidinesynthase,STR)是吲哚生物碱生物合成的一种关键酶 ,将色胺 (tryptamine)和裂环马钱子 (secologanin)耦合成为吲哚生物碱的前体化合物异胡豆苷。将异胡豆苷合成酶标定在烟草植物不同的亚细胞区室———叶绿体、液泡和内质网中表达 ,通过蛋白免疫印迹分析和STR酶活性的测定 ,表明STR在叶绿体、液泡和内质网中有效表达。STR体外酶活性分析采用间接荧光法检测色胺在反应体系的消耗。STR的酶活性分析表明了STR在烟草中不同的亚细胞区室得以活性表达。分离纯化转基因烟草的叶绿体 ,通过对其分离的不同部分的蛋白免疫印迹分析 ,确定了将STR正确标定在烟草的叶绿体中表达。  相似文献   

9.
重组色氨酸脱羧酶在烟草不同亚细胞区室的表达   总被引:2,自引:1,他引:2  
将萜烯类吲哚生物碱代谢关键酶———色氨酸脱羧酶 (TDC)的编码基因转到烟草 (NicotianatabacumL .)植物体内 ,标定在不同的亚细胞区室表达。通过蛋白免疫印迹法和色胺在植物体内的累积量测定分析 ,对转基因植物进行筛选。结果表明 ,TDC在叶绿体和胞液中高效表达 ,TDC在叶绿体中的表达水平最高 ,高于在胞液中的表达 ,在内质网和液泡中表达水平很低 ,用蛋白免疫印迹法未检出。  相似文献   

10.
11.
12.
将萜烯类吲哚生物碱代谢关键酶--色氨酸脱羧酶(TDC)的编码基因转到烟草(Nicotiana tabacum L.)植物体内,标定在不同的亚细胞区室表达。通过蛋白免疫印迹法和色胺在植物体内的累积量测定分析,对转基因植物进行筛选。结果表明,TDC在叶绿体和胞液中高效表达,TDC在叶绿体中的表达水平最高,高于在胞液中的表达,在内质网和液泡中表达水平很低,用蛋白免疫印迹法未检出。  相似文献   

13.
    
Wang Y 《Proteomics》2004,4(1):20-26
The availability of a large number of biological materials such as cDNA, antibodies, recombinant proteins, and tissues has promoted the development of microarray technologies that make use of these materials in high-throughput screening assays. However, because microarray technologies have been less successful in examining proteins than DNA and mRNA, there is a need for improved protein microarray systems. To address this need, we developed an antibody microarray-based immunostaining method that can analyze the properties of a large number of proteins simultaneously. In this method, antibodies are arrayed and immobilized on a solid support and cells bearing antigens of interest are attached to a second support. Apposition of the two supports allows the antibodies to dissociate from the array support and bind to the cellular antigens. After separation of the supports, antigen-bound antibodies can be detected by standard secondary antibody techniques. These \"dissociable\" antibody arrays were used to detect both the expression and subcellular localization of a large number of specific proteins in various cultured cell types.  相似文献   

14.
The importance of reversible protein phosphorylation to cellular regulation cannot be overstated. In eukaryotic cells, protein kinase/phosphatase signaling pathways regulate a staggering number of cellular processes, including cell proliferation, cell death (apoptosis, necroptosis, necrosis), metabolism (at both the cellular and organismal levels), behavior and neurological function, development, and pathogen resistance. Although protein phosphorylation as a mode of eukaryotic cell regulation is familiar to most biochemists, many are less familiar with protein kinase/phosphatase signaling networks that function in prokaryotes. In this thematic minireview series, we present four minireviews that cover the important field of prokaryotic protein phosphorylation.  相似文献   

15.
  总被引:7,自引:0,他引:7  
Given a protein sequence, how to identify its subcellular location? With the rapid increase in newly found protein sequences entering into databanks, the problem has become more and more important because the function of a protein is closely correlated with its localization. To practically deal with the challenge, a dataset has been established that allows the identification performed among the following 14 subcellular locations: (1) cell wall, (2) centriole, (3) chloroplast, (4) cytoplasm, (5) cytoskeleton, (6) endoplasmic reticulum, (7) extracellular, (8) Golgi apparatus, (9) lysosome, (10) mitochondria, (11) nucleus, (12) peroxisome, (13) plasma membrane, and (14) vacuole. Compared with the datasets constructed by the previous investigators, the current one represents the largest in the scope of localizations covered, and hence many proteins which were totally out of picture in the previous treatments, can now be investigated. Meanwhile, to enhance the potential and flexibility in taking into account the sequence‐order effect, the series‐mode pseudo‐amino‐acid‐composition has been introduced as a representation for a protein. High success rates are obtained by the re‐substitution test, jackknife test, and independent dataset test, respectively. It is anticipated that the current automated method can be developed to a high throughput tool for practical usage in both basic research and pharmaceutical industry. © 2003 Wiley‐Liss, Inc.  相似文献   

16.
Membrane proteins are key molecules in the cell and are important targets for drug development. Much effort has, therefore, been directed towards research of this group of proteins, but their hydrophobic nature can make working with them challenging. Here we discuss methodologies used in the study of the membrane proteome, specifically discussing approaches that circumvent technical issues specific to the membrane. In addition, we review several techniques used for visualization, qualification, quantitation and localization of membrane proteins. The combination of the techniques we describe holds great promise to allow full characterization of the membrane proteome and to map the dynamic changes within it essential for cellular function.  相似文献   

17.
Assigning subcellular localization (SL) to proteins is one of the major tasks of functional proteomics. Despite the impressive technical advances of the past decades, it is still time-consuming and laborious to experimentally determine SL on a high throughput scale. Thus, computational predictions are the preferred method for large-scale assignment of protein SL, and if appropriate, followed up by experimental studies. In this report, using a machine learning approach, the Nearest Neighbor Algorithm (NNA), we developed a prediction system for protein SL in which we incorporated a protein functional domain profile. The overall accuracy achieved by this system is 93.96%. Furthermore, comparisons with other methods have been conducted to demonstrate the validity and efficiency of our prediction system. We also provide an implementation of our Subcellular Location Prediction System (SLPS), which is available at http://pcal.biosino.org.  相似文献   

18.
    
A emm53 subclass of Group A Streptococcus pyogenes (GAS) interacts tightly with human plasma plasminogen (hPg) and plasmin (hPm) via the kringle 2 (K2hPg) domain of hPg/hPm and the N-terminal a1a2 regions of a GAS coiled-coil M-like protein (PAM). Previous studies have shown that a monomeric PAM fragment, VEK30 (residues 97–125 + Tyr), interacted specifically with isolated K2hPg. However, the binding strength of VEK30 (KD = 56 nm) was ∼60-fold weaker than that of full-length dimeric PAM (KD = 1 nm). To assess whether this attenuated binding was due to the inability of VEK30 to dimerize, we defined the minimal length of PAM required to dimerize using a series of peptides with additional PAM residues placed at the NH2 and COOH termini of VEK30. VEK64 (PAM residues 83–145 + Tyr) was found to be the smallest peptide that adopted an α-helical dimer, and was bound to K2hPg with nearly the same affinity as PAM (KD = 1–2 nm). However, addition of two PAM residues (Arg126-His127) to the COOH terminus of VEK30 (VEK32) maintained a monomeric peptidic structure, but exhibited similar K2hPg binding affinity as full-length dimeric PAM. We identified five residues in a1a2 (Arg113, His114, Glu116, Arg126, His127), mutation of which reduced PAM binding affinity for K2hPg by ∼1000-fold. Replacement of these critical residues by Ala in the GAS genome resulted in reduced virulence, similar to the effects of inactivating the PAM gene entirely. We conclude that rather than dimerization of PAM, the five key residues in the binding domain of PAM are essential to mediate the high affinity interaction with hPg, leading to increased GAS virulence.  相似文献   

19.
20.
    
Functional N-methyl-d-aspartate (NMDA) glutamate receptors are composed of heteromeric complexes of NR1, the obligatory subunit for channel activity, and NR2 or NR3 family members, which confer variability in the properties of the receptors. Recent studies have provided evidence for the existence of both binary (containing NR1 and either NR2A or NR2B) and ternary (containing NR1, NR2A, and NR2B) receptor complexes in the adult mammalian brain. However, the mechanisms regulating subunit assembly and receptor localization are not well understood. In the CNS, NMDA subunits are present both at intracellular sites and the post-synaptic membrane of neurons. Using biochemical protein fractionation and co-immunoprecipitation approaches we have found that in rat striatum binary NMDA receptors are widely distributed, and can be identified in the light membrane, synaptosomal membrane, and synaptic vesicle-enriched subcellular compartments. In contrast, ternary receptors are found exclusively in the synaptosomal membranes. When striatal proteins are chemically cross-linked prior to subcellular fractionation, ternary NMDA receptors can be precipitated from the light membrane and synaptic vesicle-enriched fractions where this type of receptor complex is not detectable under normal conditions. These findings suggest differential targeting of distinct types of NMDA receptor assemblies between intracellular and post-synaptic sites based on subunit composition. This targeting may underlie important differences in the regulation of the transport pathways involved in both normal as well as pathological receptor functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号