首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
A mathematical treatment for the general case of enzyme inactivation by an inhibitor that breaks down in solution in a first-order reaction is presented. Cathepsin D was inactivated by fluorescein isothiocyanate with a K(i) of 4.47mum. Kinetic constants were also determined for the inactivation of cathepsin D by 1,1-bis(diazoacetyl)-2-phenylethane, and the inactivation of pepsin C by diazoacetyl-dl-norleucine methyl ester.  相似文献   

5.
6.
7.
Analysis of kinetic data for irreversible enzyme inhibition.   总被引:2,自引:0,他引:2       下载免费PDF全文
Many organophosphorus compounds are irreversible inhibitors of acetylcholinesterase. The methods used in the literature to determine the inhibition kinetic constants usually involve either manual determination of the slope at various points along the inhibition progress curve or fitting polynomials to the curve. The present study investigates the use of non-linear-regression analysis to determine the various parameters. A method is suggested that yields accurate values for the inhibition constants under a range of circumstances.  相似文献   

8.
Summary Ethylcholine mustard aziridinium (ECMA) inhibits choline transport in synaptosomes at a half-maximal concentration of about 20 m. The rate of inhibition falls off rapidly after 10 min and the concentration dependency reaches a plateau at about 100 m. The inhibition is not removed by washing the synaptosomes, and choline and hemicholinium-3 protect the carrier against attack by the mustard. Choline efflux, particularly that stimulated by choline in the medium (transactivation) is also inhibited by the aziridinium compound. Similarly choline influx activated by preloaded internal choline is inhibited by ECMA. The mustard can enter the synaptosomes in an active form but most of the carrier is alkylated when facing the outside. Prior depolarization of the synaptosomes causes an increase in the rate of inhibition by ECMA which is proportionally about the same as the increase in choline influx also caused by depolarization. At low ECMA concentrations the rate of inhibition is that of a first-order reaction with the carrier but at high ECMA concentrations the translocation of the carrier to the outward-facing conformation controls the rate of inhibition. Using a model of choline transport with some simplifying assumptions it is possible to estimate the amount of carrier; cholinergic synaptosomes carry about six times the concentration of carrier found in noncholinergic ones. In noncholinergic synaptosomes the carrier faces predominately out, the reverse in cholinergic ones. The rate constant of carrier translocation is increased by combination with choline some six- to sevenfold to about 3.5 min–1. The rate constant of ECMA attack on the carrier is about 440m –1 sec–1.  相似文献   

9.
10.
Kinetic equations for the substrate reaction during simultaneous irreversible inhibition of enzyme activity for enzymes involving two substrates have been derived. It has been shown that the method proposed previously (Tsou, Acta Biochim, Biophys. Sinica 5, 398-417, 1965) for the determination of the apparent inhibition rate constants in the cases of single substrate enzymes can also be used in the present situation. Moreover, the criteria proposed to distinguish between different substrate competition types and to detect the formation of a reversible enzyme-inhibitor complex prior to the irreversible inhibition step also apply. Methods for the estimation of the microscopic rate constants have been proposed and it has been shown that irreversible inhibition kinetics can be used to distinguish between different mechanisms for substrate binding sequences.  相似文献   

11.
The course of inactivation of yeast alcohol dehydrogenase (YADH) using 4,4′-dithiodipyridine (DSDP) has been studied in this paper. The results show that the reaction mechanism between DSDP and YADH is a competitive, complexing inhibition. The microscopic constants for the inactivation of the free enzyme and the enzyme-substrate complex were determined. The presence of the substrate NAD+ offers strong protection for this enzyme against inactivation by DSDP. The above results suggest that two Cys residues are essential for activity and are situated at the active site. These essential Cys residues should be Cys-46 and Cys-174 which are ligands to the catalytic zinc ion. Another Cys residue, which can be modified by DSDP, is non-essential for activity of the enzyme.  相似文献   

12.
13.
The half-time method for the determination of Michaelis parameters from enzyme progress-curve data (Wharton, C.W. and Szawelski, R.J. (1982) Biochem. J. 203, 351-360) has been adapted for analysis of the kinetics of irreversible enzyme inhibition by an unstable site-specific inhibitor. The method is applicable to a model in which a product (R) of the decomposition of the site-specific reagent, retaining the chemical moiety responsible for inhibitor specificity, binds reversibly to the enzyme with dissociation constant Kr: (formula; see text). Half-time plots of simulated enzyme inactivation time-course data are shown to be unbiased, and excellent estimates of the apparent second-order rate constant for inactivation (k +2/Ki) and Kr can be obtained from a series of experiments with varying initial concentrations of inhibitor. Reliable estimates of k +2 and Ki individually are dependent upon the relative magnitudes of the kinetic parameters describing inactivation. The special case, Kr = Ki, is considered in some detail, and the integrated rate equation describing enzyme inactivation shown to be analogous to that for a simple bimolecular reaction between enzyme and an unstable irreversible inhibitor without the formation of a reversible enzyme-inhibitor complex. The half-time method can be directly extended to the kinetics of enzyme inactivation by an unstable mechanism-based (suicide) inhibitor, provided that the inhibitor is not also a substrate for the enzyme.  相似文献   

14.
15.
Equations have been derived and plotted to describe apparent modifier effects of a single substrate which is randomly bound, in rapid binding equilibria, at two sites of an enzyme. Three special cases have been considered: independent, non-equivalent catalytic sites; equivalent, interacting catalytic sites; one catalytic site and one modifier site. In each case, the curvature of Lineweaver-Burk plots has been determined by evaluating the limits of the derivatives, d(1/υ0)/d(1/S) and d(S/υ0)/dS. The direction of curvature has been correlated with modifier effects by distinguishing between activating and inhibiting effects on maximal velocities (V), or on dissociation constants of enzyme-substrate complexes (K). Upward curvature, with a minimum in the plot, corresponds to V-inhibition. Upward curvature without a minimum corresponds to various combinations of activating effects. Downward curvature represents either K-inhibition, with or without simultaneous V-activation, or no interaction at all.  相似文献   

16.
Exact solutions are obtained for the time dependence of the extent of irreversible binding of ligands that cover more than one lattice site to a homogeneous one-dimensional lattice. The binding may be cooperative or noncooperative and the lattice either finite or infinite. Although the form of the solution is most convenient when the ligand concentration is buffered, exact numerical or approximate analytical solutions, including upper and lower bounds, can be derived for the case of variable ligand concentration as well. The physical reason behind the relative simplicity of the kinetics of irreversible as opposed to reversible binding in such systems is discussed.  相似文献   

17.
《Bioorganic chemistry》1986,14(2):103-118
(E)-β-Fluoromethylene-m-tyrosine and related amino acids were synthesized from acetophenone derivatives and shown to be dual enzyme-activated inhibitors of monoamine oxidase. These substances are decarboxylated by hog kidney aromatic l-amino acid decarboxylase liberating (E)-β-fluoromethylene-m-tyramine derivatives which, in turn, are enzyme-activated inhibitors of rat brain mitochondrial monoamine oxidase.  相似文献   

18.
Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.  相似文献   

19.
This work deals with the phosphofructokinase enzyme (PFK) of the parasite Trypanosoma brucei. Inhibitors which are analogues of fructose-6-phosphate (F6P) derived from 2,5-anhydromannitol and therefore blocked in a closed conformation, both nonphosphorylated and phosphorylated, were designed. They provided information on this class of ATP-dependent PFK (structurally more similar to PPi-dependent PFKs revealing (i) an ordered mechanism, ATP binding first, inducing an essential conformational change to increase the affinity for F6P, and (ii) a rather hydrophobic environment at the ATP binding site. Nonphosphorylated mannitol derivatives bind at both the ATP and F6P binding sites, whereas the phosphorylated derivatives only bind at the ATP binding site. The inhibitors bearing an aromatic ring substituted at the meta position indicate a polar interaction with lysine 227, which is specific to T. brucei PFK and is replaced by a glycine in human PFK. This lysine can be irreversibly bound, leading to inhibition when an electrophilic carbon atom is beta to the meta position on the ring. This lysine was identified by site-directed mutagenesis. This first example of a specific irreversible inactivation of T. brucei PFK offers an opportunity to develop biologically active compounds against the sleeping sickness, the causative agent of which is the trypanosome.  相似文献   

20.
J R Schullek  I B Wilson 《Peptides》1989,10(2):431-434
Phosphate, borate, and Tris inhibit angiotensin converting enzyme (ACE), but HEPES buffer is inert. Measurements of substrate inhibition were made in HEPES buffer at pH 7.0 and 25 degrees C and 37 degrees C. Substrate inhibition was marked and goes to completion. A new equation for substrate inhibitions enables one, under favorable circumstances, to determine whether there is cooperativity in the binding of substrate to the inhibitory and active sites. Cooperativity does occur with ACE using Hipp-His-Leu as substrate. The kinetic parameters were measured (Km = 0.21 mM, K* = 0.65 mM at 37 degrees C). The enzyme concentration (1.94 X 10(-8) M) was determined by titration with lisinopril so that kcat (5 X 10(3) at 37 degrees C) could be determined. Using this value and the molecular weight the specific activity of ACE was calculated for different common buffers. The specific activity in HEPES calculated from Vmax was 33.7 units/mg at 37 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号