首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two ideas have essentially been used to explain the origin of the genetic code: Crick's frozen accident and Woese's amino acid-codon specific chemical interaction. Whatever the origin and codon-amino acid correlation, it is difficult to imagine the sudden appearance of the genetic code in its present form of 64 codons coding for 20 amino acids without appealing to some evolutionary process. On the contrary, it is more reasonable to assume that it evolved from a much simpler initial state in which a few triplets were coding for each of a small number of amino acids. Analysis of genetic code through information theory and the metabolism of pyrimidine biosynthesis provide evidence that suggests that the genetic code could have begun in an RNA world with the two letters A and U grouped in eight triplets coding for seven amino acids and one stop signal. This code could have progressively evolved by making gradual use of letters G and C to end with 64 triplets coding for 20 amino acids and three stop signals. According to proposed evidence, DNA could have appeared after the four-letter structure was already achieved. In the newborn DNA world, T substituted U to get higher physicochemical and genetic stability.  相似文献   

2.
The genetic code is examined for indications of possible preceding codes that existed during early evolution. Eight of the 20 amino acids are coded by ‘quartets’ of codons with four-fold degeneracy, and 16 such quartets can exist, so that an earlier code could have provided for 15 or 16 amino acids, rather than 20. If two-fold degeneracy is postulated for the first position of the codon, there could have been 10 amino acids in the code. It is speculated that these may have been phenylalanine, valine, proline, alanine, histidine, glutamine, glutamic acid, aspartic acid, cysteine and glycine. There is a notable deficiency of arginine in proteins, despite the fact that it has six codons. Simultaneously, there is more lysine in proteins than would be expected from its two codons, if the four bases in mRNA are equiprobable and are arranged randomly. It is speculated that arginine is an ‘intruder’ into the genetic code, and that it may have displaced another amino acid such as ornithine, or may even have displaced lysine from some of its previous codon assignments. As a result, natural selection has favored lysine against the fact that it has only two codons. The introduction of tRNA into protein synthesis may have been a cataclysmic and comparatively sudden event, since duplication of tRNA takes place readily, and point mutations could rapidly differentiate members of the family of duplicates from each. Two tRNAs for different amino acids may have a common ancestor that existed more recently than the separation of the prokaryotes and eukaryotes. This is shown by homology of twoE. coli tRNAs for glycine and valine, and two yeast tRNAs for arginine and lysine.  相似文献   

3.
4.
5.
It is argued that three chemical criteria determined the evolution of the genetic code: codon-anticodon pairing; codon-amino acid pairing; amino acid pairing. The first criterium determined the set of interactive nucleotides; the second, the set of nucleotides interactive with amino acids; the third, the set of mutually interactive amino acids. The code resulted from the intersection of these sets. This hypothesis explains the specificity and universality of the code as well as the “choice” of the standard amino acids and nucleotides from among those available in nature. The specific mechanism for codon-amino acid pairing assumed here is the “backwards” (Crick, 1967) Pelc-Welton (1966) models. Three types of evidence support “backwards” pairing: parallel genetic coding of amino acid pairs (Root-Bernstein, 1982); results of binding experiments by Saxinger and Ponnamperuma (1974); reinterpretation of Jungck's (1978) correlations between the properties of amino acids and their respective anticodon nucleotides. The inversion of the code to its present state occurred as a result of the evolution of tRNA molecules which supplanted parallel codon-amino acid interactions with antiparallel codon-anticodon ones. The paper concludes with suggestions for testing the hypothesis.  相似文献   

6.
7.
The genetic code is treated as a language used by primordial “collector societies” of tRNA molecules (meaning: societies of RNA molecules specialized in the collection of amino acids and possibly other molecular objects), as a means to organize the delivery of collected material. Its origin is ascribed to the utilization of the complementarity between each tRNA and the genome segment from which it was originally copied, as a means to identify by annealing operations the tRNA molecules returning from their collection trips, and elicit the release of the amino acids they are carrying (the pairing release hypothesis).The gradual conversion of tRNA complements into codon-triplets in the regions of the primordial RNA genomes which specialized in the task of directing the delivery of amino acids by returning tRNA molecules, is ascribed to the removal of genetic redundancy in a gradual reorganization process.A reconstruction of the codon-triplets in one of the earliest genetic codes is attempted by the wobbling reintroduction procedure used in a preceding paper.  相似文献   

8.
A new approach to the origin of the genetic code is proposed based on some regularities in the nucleotide distribution pattern of the code. The relative amounts of various amino acids in primitive proteins were possibly different from those in organisms living today. The primordial ratio was supposed to shift to the modern one guided by the action of primitive nucleotides. Each primitive tRNA had a discriminator site and, distinguished from it, an anticodon site. It also postulated that primordially each amino acid could correspond to a wide variety of codons. During the course of the evolutionary change, a selective mechanism worked among the protobionts so that less frequent nucleotides became associated with more abundant amino acids in the primordial conditions,thus finally leading to the present codon catalogue.  相似文献   

9.
10.

Background  

Synthesis of proteins is based on the genetic code - a nearly universal assignment of codons to amino acids (aas). A major challenge to the understanding of the origins of this assignment is the archetypal "key-lock vs. frozen accident" dilemma. Here we re-examine this dilemma in light of 1) the fundamental veto on "foresight evolution", 2) modular structures of tRNAs and aminoacyl-tRNA synthetases, and 3) the updated library of aa-binding sites in RNA aptamers successfully selected in vitro for eight amino acids.  相似文献   

11.
A correlation of various aspects of the protein structures and substrate and mechanistic specificities of the aminoacyl-tRNA synthetases has led to the identification of at least one family of enzymes probably derived from a common ancestral synthetase. While strong correlations exist only in one part of the array of 64 codons comprising the Genetic Code, this itself may be interpreted as a meaningful pattern, most consistent with a development of the present code from earlier codes containing fewer amino acids and fewer available codons. Specifically, strong correlations in the enzymes whose cognate tRNAs respond to codons containing a central pyrimidine, including the enzyme family of Ile-, Phe-, Val-, Met-, and Leu-tRNA synthetases, suggests that these enzymes evolved last, and that, therefore, an earlier version of the Genetic Code was comprised solely of codons containing a central purine. It is suggested that further study of the historical interrelationships of these enzymes could lead to a fairly detailed picture of how the Genetic Code developed.  相似文献   

12.
The origin of homochirality in molecules characterizing living systems has remained a mystery since Pasteur's recognition of the problem some 150 years ago.(2-5) Most theories also assume that homochirality emerged in one class of molecules (e.g. ribose) from which it was enriched in other molecules (e.g. amino acids) as well.(2-5)I propose a novel, experimentally testable hypothesis describing a process by which selective chirality in amino acids and ribonucleotides emerged simultaneously and hand-in-hand with the origin and directionality of the genetic code within a system of interactions involving amino acids, peptides, nucleotide bases, their sugars and polynucleotides.  相似文献   

13.
14.
The origin of the genetic code   总被引:31,自引:0,他引:31  
  相似文献   

15.
16.
A new approach to the origin of the genetic code is proposed based on some regularities in the nucleotide distribution pattern of the code. The relative amounts of various amino acids in primitive proteins were possibly different from those in organisms living today. The primordial ratio was supposed to shift to the modern one guided by the action of primitive nucleotides. Each primitive tRNA had a discriminator site and, distinguished from it, an anticodon site. It is also postulated that primordially each amino acid could correspond to a wide variety of codons. During the course of the evolutionary change, a selective mechanism worked among the protobionts so that less frequent nucleotides became associated with more abundant amino acids in the primordial conditions, thus finally leading to the present codon catalogue.Presented at The International Seminar: The Origin of Life held in Moscow, August 2–7, 1974.  相似文献   

17.
18.
H Hartman 《Origins of life》1975,6(3):423-427
An evolutionary scheme is postulated in which the bases enter the genetic code in a definite temporal sequence and the correlated amino acids are assigned definite functions in the evolving system. The scheme requires a singlet code (guanine coding for glycine) evolving into a doublet code (guanine-cytosine doublet coding for gly (GG), ala (GC), arg (CG), pro (CC). The doublet code evolves into a triplet code. Polymerization of nucleotides is thought to have been by block polymerization rather than by a template mechanism. The proteins formed at first were simple structural peptides. No direct nucleotide-amino acid stereo-chemical interaction was required. Rather an adaptor-type indirect mechanism is thought to have been functioning since the origin.  相似文献   

19.
The genetic code has been analysed by a method similar to that used by Gregor Mendel. The current codon catalogue is shown to be symmetrically subdivisible into two discrete subcatalogues of eight quartets each by classifying the quartets asmonocoding (for one amino acid only) vsheterocoding (for two amino acids or for amino acid plus nonsense). The internal symmetries of the two subcatalogues are identical, and are governed by two common parity rules. These rules, together with one governing the subdivision itself, can be explained by the hypothesis that two primaeval sets of polynucleotide-borne anticodons, corresponding closely but not exactly with the subcatalogues originated independently and separately (were not originally together within any replicating pre-or proto-biont). The discorrespondence between the primaeval sets and the subcatalogues is itself symmetrical, involving quartets sharing identical locations in the two subcatalogues. The primaeval sets correspond exactly with the subdivisions of the catalogue proposed by Skoog and co-workers on the basis of the presence vs the absence of cytokinins or “cytokininlike bases” adjacent to the anticodons. A molecular model for the origin of the primaeval anticodon sets is described, and the relationship of the hypothesis with the origin of life, together with some possibilities for testing it, are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号