首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of phytochrome in stomatal movement in Commelina communis L. is indicated by the following observations: 1) Short irradiation with red or blue light causes opening, of isolated stomata and swelling of guard cell protoplasts. This is reversed by subsequent far red irradiation. 2) In a similar way, stomatal response to prolonged irradiation with red or blue light is decreased by concomitant far red irradiation. 3) Pretreatment with filipin, which interferes with phytochrome binding to membranes, decreases stomatal opening in red and blue light. The stomatal responses to blue and red light are modified by DCMU, N2, CO2-enriched atmosphere, and CO2-free air, which are known to affect, among other processes, chlorophyll fluorescence. Increased chlorophyll fluorescence by DCMU, N2 and CO2-enriched atmosphere enhanced stomatal opening in blue light and inhibited it in red light. CO2-free air, which decreases chlorophyll fluorescence, had the opposite effect.  相似文献   

2.
The blue, green and red fluorescence emission of green wheat ( Triticum aestivum L. var. Rector) and soybean leaves ( Glycine max L. var. Maple Arrow) as induced by UV light (nitrogen laser: 337 nm) was determined in a phytochamber and in plants grown in the field. The fluorescence emission spectra show a blue maximum near 450 nm, a green shoulder near 530 nm and the two red chlorophyll fluorescence maxima near 690 and 735 nm. The ratio of blue to red fluorescence, F450/F690, exhibited a clear correlation to the irradiance applied during the growth of the plants. In contrast, the chlorophyll fluorescence ratio, F690/F735, and the ratio of blue to green fluorescence, F450/F530, seem not to be or are only slightly influenced by the irradiance applied during plant growth. The blue fluorescence F450 only slightly decreased, whereas the red chlorophyll fluorescence decreased with increasing irradiance applied during growth of the plants. This, in turn, resulted in greatly increased values of the ratio, F450/F690, from 0.5 – 1.5 to 6.4 – 8.0. The decrease in the chlorophyll fluorescence with increasing irradiance seems to be caused by the accumulation of UV light absorbing substances in the epidermal layer which considerably reduces the UV laser light which passes through the epidermis and excites the chlorophyll fluorescence of the chloroplasts in the subepidermal mesophyll cells.  相似文献   

3.
The elongation of hypocotyls excised from de-etiolated seedlings of beans (Phaseolus vulgaris L. cv. British Wax) is inhibited by light, blue and red irradiations being equally effective. Conditions which decrease chlorophyll fluorescence, such as CO2-free air, abolish the inhibitory effect of blue irradiation and enhance the inhibition by red light. Conversely, conditions which increase chlorophyll fluorescence, such as a N2 atmosphere or irradiation through a chlorophyll filter, abolish the inhibitory effect of red light and enhance the inhibition by blue irradiation. The inhibitory effect of blue light is reversible by red irradiation under increased fluorescence as well as by far red. We propose that the chlorophyll fluorescence excited by blue and red irradiations in λF > 660 nm and λF > 720 nm, respectively, is responsible for the inhibitory effect of blue light and the reduction of the inhibitory effect of non fluorescing red light. Both red and blue wavelengths seem, therefore, to control hypocotyl elongation through phytochrome.  相似文献   

4.
Laser-induced fluorescence images of the leaf of an aurea mutant of Nicotiana tabacum were recorded for the blue and green fluorescence at 440 and 520 nm and the red chlorophyll fluorescence at 690 and 735 nm. The results obtained were compared with direct measurements of the fluorescence emission spectra of leaves using a conventional spectrofluorometer. The highest emission of blue (F440) and green fluorescence (F520) within the leaf was found in the leaf veins, particularly the main leaf vein. In contrast, the intercostal fields of leaves, which exhibited the highest chlorophyll content, showed only a very low blue and green fluorescence emission, which was much lower than the red and far-red chlorophyll fluorescence emission bands (F690 and F735). Correspondingly, the ratio of blue to red leaf fluorescence F440/F690 of upper and lower leaf side was much higher in the leaf veins (values 1.2 to 1.5) than in intercostal fields (values of 0.6 to 0.7). The results also demonstrated that in the intercostal fields the major part of the blue-green fluorescence was reabsorbed by chlorophylls and carotenoids. A partial reabsorption of the red fluorescence band near 690 nm by leaf chlorophyll took place, but did not affect the far-red fluorescence band near F735. As a consequence the chlorophyll fluorescence ratio F690/F735 exhibited significantly higher values in the chlorophyll-poor leaf vein regions (1.7 to 1.8) than in the chlorophyll-rich intercostal fields (0.8 to 1.3). Imaging spectroscopy of leaves was shown to be much more precise than the screening of fluorescence signatures by conventional fluorometers. It clearly demonstrated that the blue-green fluorescence and the red chlorophyll fluorescence of leaves exhibit an inverse contrast to each other. The advantage of the fluorescence imaging spectroscopy, which allows the simultaneous screening of the whole leaf surface and distinct parts of it, and its possible application in the detection of stress effects or local damage by insects and pathogens, is discussed.  相似文献   

5.
Blue (F 450) and green (F 530) leaf fluorescence were studied together with the red chlorophyll fluorescence (emission maxima F 690 and F 735) during light-induced chlorophyll fluorescence induction kinetics (Kautsky effect) in predarkened leaves of wheat (Triticum aestivum L.) and soybean (Glycine max L.). The intensity of the red chlorophyll fluorescence decreased from maximum fluorescence Fm to steady-state fluorescence Fs, and the fluorescence ratio F 690/F 735 decreased by about 10% from Fm to Fs. However, blue and green fluorescence intensities remained constant throughout the measuring time. Consequently, the ratio of blue to red fluorescence (F 450/F 690) increased during chlorophyll fluorescence induction kinetics, whereas the ratio of blue to green fluorescence (F 450/F 530) remained unchanged within the same period. The knowledge of these ratios will be a prerequisite for the interpretation of remote sensing data from terrestrial vegetation.  相似文献   

6.
The UV light (337 nm) induced blue-green fluorescence emission of green leaves is characterized at room temperature (298 K) by a maximum near 450 nm (blue region) and a shoulder near 525 nm (green region) and was here also studied at 77 K. At liquid nitrogen temperature (77 K) the blue (F450) and green fluorescence (F525) are much enhanced as is the red chlorophyll fluorescence near 735 nm. During development of green tobacco leaves the blue fluorescence F450 (77 K) is shifted towards longer wavelengths from about 410 nm to 450 nm. The isolated leaf epidermis of tobacco showed only slight fluorescence emission with a maximum near 410 nm. The green fluorescence F525 was found to mainly originate from the mesophyll of the leaf, its intensity increased when the epidermis was removed. The red chlorophyll fluorescence emission was also enhanced when the epidermis was stripped off; this considerably changed the blue/red fluorescence ratios F450/F690 and F450/F735. The epidermis, with its cell wall and UV-light-absorbing substances in its vacuole, plays the role of a barrier for the exciting UV-light. In contrast to intact and homogenized leaves, isolated intact chloroplasts and thylakoid membranes did not exhibit a blue-green fluorescence emission.  相似文献   

7.
A new fluorescence imaging system for monitoring the uptake of the PSII-herbicide diuron (OCMU) was tested in tobacco leaves. UV-laser-induced (Λexc = 355 nm) fluorescence images were collected for blue fluorescence F440 (Λem = 440 nm), green fluorescence F520 (Λem = 520 nm), red chlorophyll fluorescence F690 (Λem = 690 nm) and for far-red chlorophyll fluorescence F740 (Λem = 740 nm). Diuron-treated leaf parts exhibited a higher red and far-red chlorophyll fluorescence emission (F690 and F740) than untreated leaf halves, whereas the blue and green fluorescence, F440 and F520, remained unaffected. As a consequence, the fluorescence ratios blue/red (F440/F690) and blue/far-red (F440/F740) significantly decreased in diuron-treated leaf parts. The time course of diuron uptake into the leaf could be followed by fluorescence images taken 10 and 30 min after diuron application. The novel high resolution fluorescence imaging method supplies information on the herbicide uptake of each point of the leaf area. Its great advantage as compared to the point data fluorescence measurements applied so far is discussed.  相似文献   

8.
A marked accumulation of chlorophyll was observed in calluscells of Nicotiana glutinosa when they were grown under bluelight, while under strong red light no chlorophyll accumulated.This blue light effect saturated at an intensity of about 500mW.m–2. The effects of white, blue and red light on the transformationof protochlorophyll (ide) (Pchl) accumulated in dark-grown calluscells were studied by following the changes in the intensityof fluorescence emitted by Pchl and different forms of chlorophyll(ide) (Chi). Pchl with a fluorescence maximum at 633 nm (absorptionmaximum: 630 nm) decreased slowly, concomitant with an increasein Chl having a fluorescence maximum at 677 nm (absorption maximum:675 nm), which was subsequently transformed, independently oflight, to Chi with a fluorescence maximum at 683 nm (absorptionmaximum: 680 nm). Both blue and red light of low intensitieswere effective for the phototransformation, while red light,but not blue light, of high intensities caused significant destructionof Pchl. An action spectrum for this photodestruction showedthat the maximum destruction took place at 630 nm. White lightof high intensities was effective for the photoreduction withonly slight destruction of Pchl, suggesting that blue lightcounteracts the destructive effect of red light. At low temperatures,however, blue light as well as red light of low intensitiescaused photodestruction of Pchl. It was inferred that blue lightenhances a certain step or steps involved in the productionof a reductant required for the photoreduction of Pchl to Chl. (Received July 3, 1981; Accepted November 11, 1981)  相似文献   

9.
Intensity, spectral characteristics and localization of the UV-laser (337 nm) induced blue-green and red fluorescence emission of green, etiolated and white primary leaves of wheat seedlings were studied in a combined fluorospectral and fluoromicroscopic investigation. The blue-green fluorescence of the green leaf was characterized by a maximum near 450 nm (blue region) and a shoulder near 530 nm (green region), whereas the red chlorophyll fluorescence exhibited maxima in the near-red (F690) and far-red (F735). The etiolated leaf with some carotenoids and traces of chlorophyll a, in turn, showed a higher intensity of the blue-green fluorescence with a shoulder in the green region and a strong red fluorescence peak near 684 to 690 nm, the far-red chlorophyll fluorescence maximum (F735) was, however, absent. The norfluorazone-treated white leaf, free of chlorophylls and carotenoids, only exhibited blue-green fluorescence of a very high intensity. In green and etiolated leaves the blue-green fluorescence primarily derived from the cell walls of the epidermis and the red fluorescence from the chlorophyll a of the mesophyll cells. In white leaves the blue-green fluorescence emanated from all cell walls of epidermis, mesophyll and leaf vein bundles. The shape and intensity of the blue-green and red fluorescence emission is determined by the reabsorption properties of chlorophylls and carotenoids in the mesophyll, thus giving rise to quite different values of the various fluorescence ratios F450/F690, F450/F530, F450/F735 and F690/F735 in green and etiolated leaves.  相似文献   

10.
Whole apple fruit (Malus domestica Borkh.) widely differing in pigment content and composition has been examined by recording its chlorophyll fluorescence excitation and diffuse reflection spectra in the visible and near UV regions. Spectral bands sensitive to the pigment concentration have been identified, and linear models for non-destructive assessment of anthocyanins, carotenoids, and flavonols via chlorophyll fluorescence measurements are put forward. The adaptation of apple fruit to high light stress involves accumulation of these protective pigments, which absorb solar radiation in broad spectral ranges extending from UV to the green and, in anthocyanin-containing cultivars, to the red regions of the spectrum. In ripening apples the protective effect in the blue region could be attributed to extrathylakoid carotenoids. A simple model, which allows the simulation of chlorophyll fluorescence excitation spectra in the visible range and a quantitative evaluation of competitive absorption by anthocyanins, carotenoids, and flavonols, is described. Evidence is presented to support the view that anthocyanins, carotenoids, and flavonols play, in fruit with low-to-moderate pigment content, the role of internal traps (insofar as they compete with chlorophylls for the absorption of incident light in specific spectral bands), affecting thereby the shape of the chlorophyll fluorescence excitation spectrum.  相似文献   

11.
与传统光源相比,LED具有光谱可控、亮度高但发热量小、寿命长等优势.LED光源可实现光谱可控,通过调制光谱与植物的感光细胞最优结合来影响植物的生长发育与营养品质.本研究利用LED精量调制光源,以‘菊花小八叶’乌塌菜品种为试验材料,设红光、蓝光、红/蓝光(3/1)、红/蓝光(7/1)、白/红/蓝光(3/2/1)5个处理,以白光为对照,研究不同光质对乌塌菜生长、光合特性及品质的影响.结果表明: 红光有利于乌塌菜生物量和茎粗的增大,而蓝光有抑制作用;叶绿素含量以红/蓝光(7/1)处理最高,且叶绿素总量与红/蓝光比值呈正相关,虽然蓝光显著降低叶绿素含量,但提高了叶绿素 a/b 值;光合速率和蒸腾速率均以红光处理最高,与对照相比分别增加43.8%和55.1%,而蓝光处理下有较高的气孔导度及胞间CO2浓度.不同光质处理对乌塌菜的荧光参数有较大影响,白光的Fv/Fm、Fv/Fo和ΦPSⅡ均最大;红光可以提高可溶性糖含量,蓝光能提高可溶性蛋白含量,白光能增加维生素C含量.综合分析,红/蓝光(7/1)处理在增加叶片光合色素含量,提高光合速率,促进植株生长和改善营养品质方面为最优组合.  相似文献   

12.
In the current work we demonstrate the relevance of monochromatic light conditions in moss plant cell culture. Light intensity and illumination wavelength are important cultivation parameters due to their impact on growth and chlorophyll formation kinetics of the moss Physcomitrella patens. This moss was chosen as a model organism due to its capability to produce complex recombinant pharmaceutical proteins. Filamentous moss cells were cultivated in mineral medium in shaking flasks. The flasks were illuminated by light emitting diodes (LED) providing nearly monochromatic red and blue light as well as white light as a reference. A maximum growth rate of 0.78 day((1) was achieved under additional CO(2) aeration and no growth inhibition was observed under high light illumination. The application of dual red and blue light is the most effective way to reach high growth and chlorophyll formation rates while minimizing energy consumption of the LEDs. These observations are discussed as effects of photo sensory pigments in the moss. The combination of monochromatic red and blue light should be considered when a large scale process is set up.  相似文献   

13.
Y. Kobayashi  S. Köster  U. Heber 《BBA》1982,682(1):44-54
Scattering of green light and chlorophyll fluorescence by spinach leaves kept in a stream of air or nitrogen were compared with leaf adenylate levels during illumination with blue, red or far-red light. Energy charge and ATP-ADP ratios exhibited considerable variability in different leaves both in the dark and in the light. Variability is explained by different possible states of the reaction oxidizing triose phosphate or reducing 3-phosphoglycerate. Except when oxygen levels were low, there was an inverse relationship between light scattering and chlorophyll fluorescence during illumination with blue or red light. When CO2 was added to a stream of CO2-free air, chlorophyll fluorescence increased, sometimes after a transient decrease, and both light scattering and leaf ATPADP ratios decreased. Similar observations were made when air was replaced by nitrogen under blue or high-intensity red light. Under these conditions, over-reduction caused inhibition of electron transport and phosphorylation in chloroplasts. However, when air was replaced by nitrogen during illumination with low-intensity red light or far-red light, light scattering increased instead of decreasing. Under these light conditions, ATPADP ratios were maintained in the light. They decreased drastically only after darkening. Although ATPADP ratios responded faster than light scattering or the slow secondary decline of chlorophyll fluorescence due to illumination, it appeared that in the steady state, light scattering and chlorophyll fluorescence are useful indicators of the phosphorylation state of the leaf adenylate system at least under aerobic conditions, when chloroplast and extrachloroplast adenylate systems can effectively communicate.  相似文献   

14.
Potato root tips were grown in cultures and the effect of blue, red, and white light on chlorophyll formation was studied. The roots grown in white light turned green in 4–6 weeks, whereas in blue or red light, green colour occasionally appeared at places. The chlorophyll contents, as determined by the spectrophotometeric method, were found to be maximum in unfiltered light followed by blue and red light. In white and blue light treatments chlorophyll a contents were higher than chlorophyll b, however in red light this was reversed. The results are compared with earlier experiments on chlorophyll formation in excised roots.  相似文献   

15.
Profiles of chlorophyll fluorescence were measured in spinach leaves irradiated with monochromatic light. The characteristics of the profiles within the mesophyll were determined by the optical properties of the leaf tissue and the spectral quality of the actinic light. When leaves were infiltrated with 10?4M DCMU [3‐(3,4‐dichlorophenyl)‐1, 1‐dimethyl‐urea] or water, treatments that minimized light scattering, irradiation with 2000 μmol m?2 s?1 green light produced broad Gaussian‐shaped fluorescence profiles that spanned most of the mesophyll. Profiles for chlorophyll fluorescence in the red (680 ± 16 nm) and far red (λ > 710 nm) were similar except that there was elevated red fluorescence near the adaxial leaf surface relative to far red fluorescence. Fluorescence profiles were narrower in non‐infiltrated leaf samples where light scattering increased the light gradient. The fluorescence profile was broader when the leaf was irradiated on its adaxial versus abaxial surface due to the contrasting optical properties of the palisade and spongy mesophyll. Irradiation with blue, red and green monochromatic light produced profiles that peaked 50, 100 and 150 μm, respectively, beneath the irradiated surface. These results are consistent with previous measurements of the light gradient in spinach and they agree qualitatively with measurements of carbon fixation under monochromatic blue, red and green light. These results suggest that chlorophyll fluorescence profiles may be used to estimate the distribution of quanta that are absorbed within the leaf for photosynthesis.  相似文献   

16.
不同光质对烟草叶片生长及光合作用的影响   总被引:3,自引:0,他引:3  
通过对烟草植株覆盖白、红、黄、蓝、紫色滤膜获得不同光质,研究了光质对烟叶生长及光合作用的影响。结果表明,与白膜处理相比,红膜与蓝膜处理下的烟草叶片较厚,比叶面积较小,叶绿素a/b比值、净光合速率、可变荧光强度(Fv)和最大荧光强度(Fm)的比值Fv/Fm(PSⅡ最大光化学量子效率)、PSⅡ实际光化学量子效率(ΦPSⅡ)、光饱和点和CO2饱和点均较高。黄膜处理下的叶片较白膜处理的更薄,净光合速率、Fv/Fm、ΦPSⅡ、光饱和点、CO2饱和点均较低。紫膜处理的叶片比叶面积比白膜处理的小,净光合速率和Fv/Fm比白膜的大。实验结果表明红光、蓝光和紫光促进了烟叶的生长,这种促进作用是与其高光合效率紧密相连的;而黄光对烟叶的生长有一定程度的抑制作用。  相似文献   

17.
In our study, we investigated whether multiple fluorescence indices may be used to sense physiological changes in tomato plants (Solanum lycopersicum L.) caused by salinity and water deficit as single or combined stresses. The fluorescence intensity in the blue (B), red (R) and far-red (FR) spectral regions and the pulse-amplitude-modulated (PAM) chlorophyll fluorescence, were recorded on a weekly basis in the scope of a long-term experiment. The results indicate the coefficient of photochemical quenching (qL), the B to FR fluorescence ratio and the logarithm of the FR fluorescence ratio after R and UV-light excitation as appropriate parameters to sense the response of plants to the imposed stress. The qL revealed the impact of water deficiency, whereas the two multispectral ratios revealed the influence of combined salinity and water shortage. Despite minor changes in the chlorophyll concentration, salinity and water deficit, when combined, had an additive impact on the chlorophyll fluorescence. Overall, the fluorescence signals of ‘Rio Grande’ were more affected by the induced stresses compared to ‘Harzfeuer’. The multiparametric fluorescence technique, confirming the trends obtained with the PAM-method, reveals promising perspectives for the ‘in situ’ evaluation of the physiological status of horticultural crops.  相似文献   

18.
Di  Qinghua  Li  Jing  Du  Yufen  Wei  Min  Shi  Qinghua  Li  Yan  Yang  Fengjuan 《Journal of Plant Growth Regulation》2021,40(4):1477-1492

The photosynthesis, photomorphogenesis, and photoperiod processes in plants are regulated according to light intensity and quality. The aim of this study was to investigate the effects of different light qualities on eggplant seedlings and determine the best light quality for growth. The seedlings of eggplant cultivar ‘Jingqiejingang’ were grown under light-emitting diodes (LEDs): white (W, the control), red (R), blue (B), and different ratios of B/R lights (B/R = 1/1, B/R = 1/3, B/R = 1/6, B/R = 1/9). The growth parameters, leaf morphology, photosynthetic performance, chlorophyll fluorescence, and the carbon and nitrogen metabolism in the leaves of eggplant seedlings under different LED light treatments were studied. The results showed that the plant height, leaf development, and photosynthetic characteristics were inhibited by red light but elevated by blue light compared with the control. Conversely, the contents of chlorophyll a, chlorophyll b, and carotenoids were all increased by red light, while decreased by blue light significantly. In addition, the contents of carbohydrates and the activities of nitrogen assimilation enzymes were not or little changed by the monochromatic blue and red light. The combined light of red and blue were more beneficial for growth than the monochromatic light, especially B/R = 1/3 light. Under B/R = 1/3 light, the parameter values of plant growth, leaf development, photosynthetic pigments and characteristics, and carbon and nitrogen metabolism were all maximum. Taken together, combined application lights of red and blue are good practice for the cultivation of eggplant seedlings, and LED B/R = 1/3 light was optimum.

  相似文献   

19.
? We studied how different color lights cause gradients of photoinhibition within a leaf, to attempt to resolve the controversy of whether photon absorption by chlorophyll or by manganese (Mn) is the primary cause of photoinhibition, as suggested by the excess-energy hypothesis or the two-step hypothesis, respectively. ? Lincomycin-treated leaf discs were photoinhibited by white, blue, green or red light. Combining a microfiber fluorometer, a fiber-thinning technique and a micro-manipulator enabled us to measure the chlorophyll fluorescence signals within a leaf. Photoinhibition gradients were also compared with results from various conventional fluorometers to estimate their depth of signal detection. ? The severity of photoinhibition was in the descending order of blue, red and green light near the adaxial surface, and in the descending order of blue, green and red light in the deeper tissue, which correlated with the chlorophyll and the Mn absorption spectrums, respectively. These results cannot be explained by either hypothesis alone. ? These data strongly suggest that both the excess-energy and the two-step mechanisms occur in photoinhibition, and fluorometers with red or blue measuring light give overestimated or underestimated F(v)/F(m) values of photoinhibited leaves compared with the whole tissue average, respectively; that is, they measured deeper or shallower leaf tissue, respectively.  相似文献   

20.
Chlorophyll and chlorophyll degradation products were observed in the two-spotted spider mite (Tetranychus urticae) using epifluorescence microscopy (EFM) and confocal laser scanning microscopy (CLSM). A clear red fluorescence (EFM) and a fluorescence induced by a laser wavelength of 650 nm (CLSM) were observed. In the lateral caeca, in the ventriculus and in the excretory organ, a bright light blue fluorescence was observed in close association with chlorophyll by using EFM. The same material can be localized with CLSM by using a laser with a wavelength of 488 nm. By comparison with synthetic guanine, this bright fluorescence is supposed to be guanine. The presence of guanine fluorescence in the mite pellets confirms this hypothesis. A possible mechanism for guanine formation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号