首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li3PO4 phosphors prepared by solid‐state diffusion technique and lyoluminescence (LL) as well as mechanoluminescence (ML) studies are reported. Dy‐ and Tb‐activated phosphors show dosimetric characteristics using LL and ML techniques. The energy levels and hence trapping and detrapping of charge carriers in the material can be studied using ML. Li3PO4 phosphor can be used in the dosimetric applications for ionizing radiation. By using the LL technique, the LL characteristics of Li3PO4 may be useful for high radiation doses. We also report a more detailed theoretical understanding of the mechanism of LL and ML. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
K. N. Shinde  K. Park 《Luminescence》2013,28(5):793-796
A series of efficient Li3Al2(PO4)3:Eu2+ novel phosphors were synthesized by the facile combustion method. The effects of dopant on the luminescence behavior of Li3Al2(PO4)3 phosphor were also investigated. The phosphors were characterized by X‐ray diffraction, field emission scanning electron microscope and photoluminescence techniques. The result shows that all samples can be excited efficiently by near‐ultraviolet excitation under 310 nm. The emission was observed for Li3Al2(PO4)3:Eu2+ phosphor at 425 nm, which corresponded to the d → f transition. The concentration quenching of Eu2+ was observed in Li3Al2(PO4)3:Eu2+ when the Eu concentration was at 0.5 mol%. The prepared powders exhibited intense blue emission at the 425 nm owing to the Eu2+ ion by Hg‐free excitation at 310 nm (i.e., solid‐state lighting excitation). Consequently, the availability of such a phosphor will significantly help in the development of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, we have reported the photoluminescence (PL) properties of the Ba2Mg(PO4)2:Eu3+ phosphor synthesized using a wet chemical method. The preliminary scanning electron microscopy (SEM) investigation of the sample revealed irregular surface morphology with particle sizes in the 10–50 μm range. The strongest PL excitation peak was observed at 396 nm. The emission spectra indicated that this phosphor can be effectively excited by the 396 nm wavelength. Upon 396 nm excitation, the emission spectrum showed characteristics peaks located at 592 nm and 615 nm. These intense orange‐red emission peaks were obtained due to f→f transitions of Eu3+ ions. The emission peak at 592 nm is referred to as the magnetic dipole 5D07F1 transition and the emission peak at 615 nm corresponded to the electric dipole 5D07F2 transition of Eu3+. The Commission Internationale de l’Eclairage (CIE) coordinates of the Ba2Mg(PO4)2:Eu3+ phosphor were found to be (0.586, 0.412) for wavelength 592 nm and (0.680, 0.319) for wavelength 615 nm situated at the edge of the CIE diagram, indicating high colour purity of phosphors. Due to the high emission intensity and a good excitation profile, Eu3+‐doped Ba2Mg(PO4)2 phosphor may be a promising orange‐red phosphor candidate for solid‐state lighting applications.  相似文献   

4.
Single crystals of KCl doped with Ce3+,Tb3+ were grown using the Bridgeman–Stockbarger technique. Thermoluminescence (TL), optical absorption, photoluminescence (PL), photo‐stimulated luminescence (PSL), and thermal‐stimulated luminescence (TSL) properties were studied after γ‐ray irradiation at room temperature. The glow curve of the γ‐ray‐irradiated crystal exhibits three peaks at 420, 470 and 525 K. F‐Light bleaching (560 nm) leads to a drastic change in the TL glow curve. The optical absorption measurements indicate that F‐ and V‐centres are formed in the crystal during γ‐ray irradiation. It was attempted to incorporate a broad band of cerium activator into the narrow band of terbium in the KCl host without a reduction in the emission intensity. Cerium co‐doped KCl:Tb crystals showed broad band emission due to the d–f transition of cerium and a reduction in the intensity of the emission peak due to 5D37Fj (j = 3, 4) transition of terbium, when excited at 330 nm. These results support that energy transfer occurs from cerium to terbium in the KCl host. Co‐doping Ce3+ ions greatly intensified the excitation peak at 339 nm for the emission at 400 nm of Tb3+. The emission due to Tb3+ ions was confirmed by PSL and TSL spectra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

6.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Ca2MgSi2O7:Eu2+,Dy3+ phosphor was prepared by the solid‐state reaction method under a weak reducing atmosphere. The obtained phosphor was characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FT‐IR) techniques. The phase structure of the Ca2MgSi2O7:Eu2+,Dy3+ phosphor was akermanite type, which is a member of the melilite group. The surface morphology of the sintered phosphor was not uniform and phosphors aggregated tightly. EDX and FT‐IR spectra confirm the elements present in the Ca2MgSi2O7:Eu2+,Dy3+ phosphor. Under UV excitation, a broadband emission spectrum was found. The emission spectra observed in the green region centered at 535 nm, which is due to the 4f–5d transition. The mechanoluminescence (ML) intensity of the prepared phosphor increased linearly with increases in the mechanical load. The ML spectra were similar to the photoluminescence (PL), which indicates that ML is emitted from the same emitting center of Eu2+ ions as PL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The lyoluminescence (LL), thermoluminescence (TL) and mechanoluminescence (ML) of γ‐ray‐irradiated coloured powder of KCl:Dy (0.05–0.5 mol%) phosphors are reported in this paper. To understand the mechanism of LL and ML, the LL and ML spectra are compared with TL studies. The variation of intensity of respective luminescence with different γ‐ray doses and with different concentrations of Dy3+ ion doped in KCl is found to be similar in nature. The intensities differ from each other, but their nature is found to be similar with γ‐ray exposures. The ML glow peak intensity is linear up to high 1 kGy exposure as compared to LL (up to 0.5 kGy) and TL (up to 0.75 kGy) techniques. Therefore, according to our results, the recommendation is that KCl:Dy (0.1 mol%) phosphor prepared by wet chemical technique is useful for high‐dose measurements using the ML technique for accidental radiation dosimetry. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Di‐barium magnesium silicate phosphor doped with Eu2+ and Dy3+ was prepared using a solid‐state reaction technique under a reducing atmosphere. The sample underwent impulsive deformation by impact from a piston for mechanoluminescence (ML) investigations. The temporal ML characteristics of the phosphor were observed, which expressed a single sharp peak with a long decaying period. To investigate the luminescence centre responsible for the ML peak, the ML spectrum of the phosphor was also observed. The recorded ML spectrum was similar in shape and peak wavelength to the photoluminescence (PL) spectrum, which verifies the existence of a single emission centre due to the transition of Eu2+ ions, i.e. transitions from any of the sublevels of the 4f65d1 configuration to the 8S7/2 level of the 4f7 configuration. Decay rates for different impact velocities were also calculated using curve‐fitting techniques. The time of the ML peak and the rate of decay did not change significantly with respect to increasing impact velocity of the load and peak ML intensity varied linearly. The mechanism of the ML emission was also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
A series of phosphors KAl1‐xPO4Cl:Eux3+ (0.1 ≤ x ≤ 1.0) was synthesized using a facile combustion method using urea as a fuel and their structural, morphological and photoluminescence properties were investigated. It was found that the particle size was in the range of 1–2 µm with an irregular shape. The f–f transitions of Eu3+ in the host lattice were assigned and discussed. The excitation and emission spectra indicated that this phosphor can be efficiently excited by ultraviolet (395 nm), and exhibit reddish orange emission corresponding to the 5D07FJ (J = 0, 1, 2) transitions of Eu3+. The impact of the Eu3+ concentration on the relative emission intensity was investigated, and the best doping concentration is 0.5. The present study suggests that the KAl0.5PO4Cl: Eu0.53+ phosphor is a strong candidate as a red component for phosphor‐ converted white light‐emitting diodes (LEDs). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Ce3+‐doped calcium aluminosilicate phosphor was prepared by a combustion‐assisted method at an initiating temperature of 600°C. Structural characterization was carried out using X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The absorption spectra of Ca2Al2SiO7:Ce3+ showed an absorption edge at 230 nm. The optical characterization of Ca2Al2SiO7:Ce3+ phosphor was investigated in a fracto‐mechanoluminescence (FML) and thermoluminescence (TL) study. The peak of ML intensity increased as the height of impact of the moving piston increased. The TL intensity of Ca2Al2SiO7:Ce3+ was recorded for different exposure times of UV and γ‐irradiation and it was observed that TL intensity was maximum for a UV irradiation time of 30 min and for a γ‐dose of 1180 Gy. The TL intensity had three peaks for UV irradiation at temperatures 82°C, 125°C and 203°C. Also the TL intensity had a single peak at 152°C for γ‐irradiation. The TL and ML emission spectra of Ca2Al2SiO7:Ce3+ phosphor showed maximum emission at 400 nm. The possible mechanisms involved in the TL and ML processes of the Ca2Al2SiO7:Ce3+ phosphor are also explained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper focuses on an optical study of a Tb3+/Bi3+‐doped and Sm3+/La3+‐ doped Ca2Al2SiO7 phosphor synthesized using combustion methods. Here, Ca2Al2SiO7:Sm3+ showed a red emission band under visible light excitation but, when it co‐doped with La3+ ions, the emission intensity was further enhanced. Ca2Al2SiO7:Tb3+ shows the characteristic green emission band under near‐ultraviolet light excitation wavelengths, co‐doping with Bi3+ ions produced enhanced photoluminescence intensity with better colour tunable properties. The phosphor exhibited better phase purity and crystallinity, confirmed by X‐ray diffraction. Binding energies of Ca(2p), Al(2p), Si(2p), O(1s) were studied using X‐ray photoelectron spectroscopy. The reported phosphor may be a promising visible light excited red phosphor for light‐emitting diodes and energy conversion devices.  相似文献   

13.
We report the synthesis and structural characterization of Er3+,Yb3+‐doped Gd2O3 phosphor. The sample was prepared using the conventional solid‐state reaction method, which is the most suitable method for large‐scale production. The prepared phosphor sample was characterized using X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermoluminescence (TL), photoluminescence (PL) and CIE techniques. For PL studies, the excitation and emission spectra of Gd2O3 phosphor doped with Er3+ and Yb3+ were recorded. The excitation spectrum was recorded at a wavelength of 551 nm and showed an intense peak at 276 nm. The emission spectrum was recorded at 276 nm excitation and showed peaks in all blue, green and red regions, which indicate that the prepared phosphor may act as a single host for white light‐emitting diode (WLED) applications, as verified by International de I'Eclairage (CIE) techniques. From the XRD data, the calculated average crystallite size of Er3+ and Yb3+‐doped Gd2O3 phosphor is ~ 38 nm. A TL study was carried out for the phosphor using UV irradiation. The TL glow curve was recorded for UV, beta and gamma irradiations, and the kinetic parameters were also calculated. In addition, the trap parameters of the prepared phosphor were also studied using computerized glow curve deconvolution (CGCD). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
In the yttrium aluminium system, the YAlO3 phosphor is a prominent host because of the yttrium aluminium ratio (1:1). Phosphor was synthesized by the solid‐state reaction method at variable concentrations of erbium (0.1–2.5 mol%). This method is suitable for large‐scale production and is a less time‐consuming method when compared with the soft synthesis method. The prepared sample was characterized by X‐ray diffraction technique and the crystallite size was calculated by Scherer's formula. Vibrational and bending analysis of prepared phosphor for optimized concentration of erbium ion is described based on the Fourier transform infrared spectroscopic technique. The photoluminescence (PL) emission spectra of prepared phosphor for variable concentrations of erbium ion were recorded and the excitation spectrum was found to be at 291 nm with three shoulder peaks at 305, 270 and 242 nm. For 291 nm excitation, the emission spectrum was found at 546 nm and 552 nm. PL intensity increased with increasing concentrations of erbium and after 2 mol% emission intensity decreased due to concentration quenching. Spectrophotometric determination of YAlO3:Er3+ is described by CIE co‐ordinates and shows an intense emission in the green region such that the prepared phosphor can act as a single host for green light emission. Thermoluminescence glow curve analysis of the YAlO3:Er3+ phosphor was recorded for different ultraviolet (UV) light exposures and gamma exposure. Different gamma doses 0.5–2 kGy show a linear response. Kinetic parameters were calculated by the peak shape method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
An orange‐emitting phosphor, Eu2+‐activated LiSr4(BO3)3, was synthesized using the conventional solid‐state reaction. The photoluminescence excitation and emission spectra, and temperature dependence of the luminescence intensity of the phosphor were investigated. The results showed that LiSr4(BO3)3:Eu2+ could be efficiently excited by incident light of 250–450 nm, and emits a strong orange light. With increasing temperature, the emission bands of LiSr4(BO3)3:Eu2+ show an abnormal blue‐shift with broadening bandwidth and decreasing emission intensity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The novel red‐emitting phosphors KxSr1?2xMoO4:Pr3+x (0.00 ≤ x ≤ 0.04) were prepared by solid‐state reaction. The crystallization and particle sizes of samples were investigated by powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). TEM images were in good agreement with the theoretical calculation data from the XRD patterns. Photoluminescence analysis indicated that there were three excitation peaks under 430–500 nm, and all samples showed the intensely red emission at 648 nm corresponding to the 3P03F2 transition of Pr3+. The concentrations of doping ions, temperature and polyethylene glycol in the phosphor system can significantly influence the intensity of the red emission. The photoluminescence spectral intensity reached its maximum at x = 0.02. The results showed that the investigated phosphor is a potential red phosphor for white light‐emitting diodes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The present paper describes the synthesis of cerium‐doped barium magnesium aluminate phosphor by combustion method. The crystal structure of synthesized phosphor belongs to the P63/mmc space group and is related to the β‐alumina structure. The photoluminescence emission spectra exhibited a broad peak centered at 440 nm showing the Ce3+ emission. The thermoluminescence properties of phosphors under ultraviolet irradiation were investigated. The activation energy was calculated by Chen's empirical method. Fracto‐mechanoluminescence properties were also investigated. The phosphor showed mechanoluminescence (ML) properties without irradiation and the ML intensity increased linearly with the impact height of the moving piston. Therefore this compound may have a use as a damage sensor. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Pure and Li+‐doped Alq3 complexes were synthesized by simple precipitation method at room temperature, maintaining the stoichiometric ratio. These complexes were characterized by X‐ray diffraction, ultraviolet‐visible absorption and Fourier transform infrared and photoluminescence (PL) spectra. X‐ray diffraction analysis reveals the crystalline nature of the synthesized complexes, while Fourier transform infrared spectroscopy confirm the molecular structure, the completion of quinoline ring formation and presence of quinoline structure in the metal complex. Ultraviolet‐visible and PL spectra revealed that Li+ activated Alq3 complexes exhibit the highest intensity in comparison to pure Alq3 phosphor. Thus, Li+ enhances PL emission intensity when doped into Alq3 phosphor. The excitation spectra lie in the range of 383–456 nm. All the synthesized complexes other than Liq give green emission, while Liq gives blue emission with enhanced intensity. Thus, he synthesized phosphors are the best suitable candidates for green‐ and blue‐emitting organic light emitting diode, PL liquid‐crystal display and solid‐state lighting applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Zn‐doped CaTiO3:Eu3+ red phosphors for enhanced photoluminescence in white light‐emitting diodes (LEDs) were synthesized by a solid‐state method. The structure and morphology of the obtained phosphor samples were observed by X‐ray diffraction (XRD) and scanning electron microscopy (SEM), and the impact of Ca, Zn and Eu content on their photoluminescence properties was studied. The results indicated that Zn not only participates in the formation of defects in suitable lattice matrices but also has a role in flux in the transformation from ZnO to Zn2TiO4, which is beneficial for the enhancement of photoluminescence properties. Photoluminescence test data showed that the Zn‐doped phosphor is excited efficiently by near‐ultraviolet (NUV) light at wavelengths around 398 nm and emits an intense red light with a broad peak around 616 nm corresponding to the 5D07F2 transition of Eu3+. The intensity of this phosphor emission is three times stronger than that without Zn‐doping. Furthermore, this phosphor has very good thermal stability, high color purity and a low sintered temperature, all of which suggest its potential as a promising red phosphor for white LEDs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We report synthesis of a cerium‐activated strontium pyrophosphate (Sr2P2O7) phosphor using a high‐temperature combustion method. Samples were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), photoluminescence (PL) and thermoluminescence (TL). The XRD pattern reveals that Sr2P2O7 has an α‐phase with crystallization in the orthorhombic space group of Pnam. The IR spectrum of α‐Sr2P2O7 displays characteristic bands at 746 and 1190 cm‐1 corresponding to the absorption of (P2O7)‐4. PL emission spectra exhibit a broad emission band around 376 nm in the near‐UV region due to the allowed 5d–4f transition of cerium and suggest its applications in a UV light‐emitting diode (LED) source. PL also reveals that the emission originates from 5d–4f transition of Ce3+ and intensity increases with doping concentration. TL measurements made after X‐ray irradiation, manifest a single intense glow peak at around 192°C, which suggests that this is an outstanding candidate for dosimetry applications. The kinetic parameters, activation energy and frequency factor of the glow curve were calculated using different analysis methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号