首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During pathogenesis, Gram-positive bacteria utilize surface protein virulence factors such as the MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) to aid the initiation and propagation of infection through adherence to host endothelial tissue and immune system evasion. These virulence-associated proteins generally contain a C-terminal LPXTG motif that becomes covalently anchored to the peptidoglycan biosynthesis intermediate lipid II. In Staphylococcus aureus, deletion of the sortase isoform SrtA results in marked reduction in virulence and infection potential, making it an important antivirulence target. Here we describe the chemical synthesis and kinetic characterization of a nonhydrolyzable phosphinic peptidomimetic inhibitor of SrtA derived from the LPXTG substrate sequence.  相似文献   

2.
Type IV secretion systems and their effectors in bacterial pathogenesis   总被引:2,自引:0,他引:2  
Type IV secretion systems (T4SSs) are membrane-associated transporter complexes used by various bacteria to deliver substrate molecules to a wide range of target cells. T4SSs are involved in horizontal DNA transfer to other bacteria and eukaryotic cells, in DNA uptake from or release into the extracellular milieu, in toxin secretion and in the injection of virulence factors into eukaryotic host target cells by several mammalian pathogens. Rapid progress has been made towards defining the structures and functions of T4SSs, identifying the translocated effector molecules and elucidating the mechanisms by which the effectors subvert eukaryotic cellular processes during infection. These findings have had an important impact on our understanding of how these pathogens manipulate host cell functions to trigger bacterial uptake, facilitate intracellular growth and suppress defence mechanisms, thus facilitating bacterial colonization and disease development.  相似文献   

3.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In this study, we used a modified in vivo expression technology system to identify E. amylovora genes that are activated during infection of immature pear tissue, a process that requires the major pathogenicity factors of this organism. We identified 394 unique pear fruit-induced (pfi) genes on the basis of sequence similarity to known genes and separated them into nine putative function groups including host-microbe interactions (3.8%), stress response (5.3%), regulation (11.9%), cell surface (8.9%), transport (13.5%), mobile elements (1.0%), metabolism (20.3%), nutrient acquisition and synthesis (15.5%), and unknown or hypothetical proteins (19.8%). Known virulence genes, including hrp/hrc components of the type III secretion system, the major effector gene dspE, type II secretion, levansucrase (lsc), and regulators of levansucrase and amylovoran biosynthesis, were upregulated during pear tissue infection. Known virulence factors previously identified in E. (Pectobacterium) carotovora and Pseudomonas syringae were identified for the first time in E. amylovora and included HecA hemagglutinin family adhesion, Peh polygalacturonase, new effector HopPtoC(EA), and membrane-bound lytic murein transglycosylase MltE(EA). An insertional mutation within hopPtoC(EA) did not result in reduced virulence; however, an mltE(EA) knockout mutant was reduced in virulence and growth in immature pears. This study suggests that E. amylovora utilizes a variety of strategies during plant infection and to overcome the stressful and poor nutritional environment of its plant hosts.  相似文献   

4.
Many bacteria utilize sophisticated regulatory systems to ensure that some functions are only expressed when a particular population density has been reached. The term 'quorum-sensing' has been coined to describe this form of density-dependent gene regulation which relies on the production and perception of small signal molecules by bacterial cells. As in many pathogenic bacteria the production of virulence factors is quorum-sensing regulated, it has been suggested that this form of gene regulation allows the bacteria to remain invisible to the defence systems of the host until the population is sufficiently large to successfully establish the infection. Here we present first evidence that polyphenolic compounds can interfere with bacterial quorum-sensing. Since polyphenols are widely distributed in the plant kingdom, they may be important for promoting plant fitness.  相似文献   

5.
The battle between phytopathogenic bacteria and their plant hosts has revealed a diverse suite of strategies and mechanisms employed by the pathogen or the host to gain the higher ground. Pathogens continually evolve tactics to acquire host resources and dampen host defences. Hosts must evolve surveillance and defence systems that are sensitive enough to rapidly respond to a diverse range of pathogens, while reducing costly and damaging inappropriate misexpression. The primary virulence mechanism employed by many bacteria is the type III secretion system, which secretes and translocates effector proteins directly into the cells of their plant hosts. Effectors have diverse enzymatic functions and can target specific components of plant systems. While these effectors should favour bacterial fitness, the host may be able to thwart infection by recognizing the activity or presence of these foreign molecules and initiating retaliatory immune measures. We review the diverse host cellular systems exploited by bacterial effectors, with particular focus on plant proteins directly targeted by effectors. Effector–host interactions reveal different stages of the battle between pathogen and host, as well as the diverse molecular strategies employed by bacterial pathogens to hijack eukaryotic cellular systems.  相似文献   

6.
Among the major bacterial secretions, outer membrane vesicles (OMVs) are significant and highly functional. The proteins and other biomolecules identified within OMVs provide new insights into the possible functions of OMVs in bacteria. OMVs are rich in proteins, nucleic acids, toxins and virulence factors that play a critical role in bacteria-host interactions. In this review, we discuss some proteins with multifunctional features from bacterial OMVs and their role involving the mechanisms of bacterial survival and defence. Proteins with moonlighting activities in OMVs are discussed based on their functions in bacteria. OMVs harbour many other proteins that are important, such as proteins involved in virulence, defence, and competition. Overall, OMVs are a power-packed aid for bacteria, harbouring many defensive and moonlighting proteins and acting as a survival kit in case of an emergency or as a defence weapon. In summary, OMVs can be defined as bug-out bags for bacterial defence and, therefore, survival.  相似文献   

7.
Most bacteria encode proteins for defence against infection by bacteriophages. The mechanisms that bring about phage defence are extremely diverse, suggesting frequent independent evolution of novel processes. Phage defence determinants are often plasmid or phage-encoded and many that are chromosomal show evidence of lateral transfer. Recent studies on restriction-modification (R-M) systems show that these genes are amongst the most rapidly evolving. Some bacteria have contingency genes that encode alternative target specificity determinants for Type I or Type III R-M systems, thus expanding the range of phages against which the host population is immune. The most counter-intuitive observation, however, is the prevalence of phase variation in many restriction systems, but recent arguments suggest that switching off expression of R-M systems can aid phage defence.  相似文献   

8.
Different species of pathogenic bacteria, including Salmonella, Neisseria, Listeria and Francisella have been used to demonstrate relationship between the synthesis of stressor induced proteins by cells and the phenotypic manifestation of their virulence. The impact of such external factors as high temperature, low pH, osmolarity, substrate limitation, the content of active forms of oxygen, etc. is accompanied by the synthesis of different stressor induced proteins playing a complex role. Under unfavorable environmental conditions the synthesis of these proteins ensures the survival of the infective agents. Under conditions of a macroorganism synthesis of some stressor induced proteins promotes the survival of infective agents and their resistance to the action of humoral and cell-mediated protective factors of the host. As is known, the expression of virulence genes is not constitutive. The expression of these genes greatly depends on environmental conditions and its induction is determined by extra- or intracellular location of the infective agent. Several systems of the regulation of bacterial pathogenicity factors have been described that are relatively not numerous, conservative and respond to external signals. The relevance of a number of stressor induced proteins of bacteria to virulence associated factors is discussed.  相似文献   

9.
Mucosal pathogens use diverse and highly specific molecular mechanisms to activate mucosal inflammation. It may even be argued that their virulence depends on the inflammatory response that they induce. Some bacteria target epithelial cells and trigger them to produce inflammatory mediators but others cross the mucosa and activate macrophages or dendritic cells. Although systemic release of inflammatory mediators causes many symptoms and signs of infection, local chemokine production leads to the recruitment of inflammatory cells and lymphocytes that participate directly in the clearance of bacteria from mucosal sites. In this way, mucosal inflammation is a two-edged sword responsible for disease associated tissue destruction and crucial for the antimicrobial defence. Understanding of these pathways should create tools to enhance the defence and interfere with disease.  相似文献   

10.
Moraxella catarrhalis is an emerging human respiratory pathogen in patients with chronic obstructive pulmonary disease (COPD) and in children with acute otitis media. The specific secretion machinery known as outer membrane vesicles (OMVs) is a mechanism by which Gram-negative pathogens interact with host cells during infection. We identified 57 proteins in M. catarrhalis OMVs using a proteomics approach combining two-dimensional SDS-PAGE and MALDI-TOF mass spectrometry analysis. The OMVs contained known surface proteins such as ubiquitous surface proteins (Usp) A1/A2, and Moraxella IgD-binding protein (MID). Most of the proteins are adhesins/virulence factors triggering the immune response, but also aid bacteria to evade the host defence. FITC-stained OMVs bound to lipid raft domains in alveolar epithelial cells and were internalized after interaction with Toll-like receptor 2 (TLR2), suggesting a delivery to the host tissue of a large and complex group of OMV-attributed proteins. Interestingly, OMVs modulated the pro-inflammatory response in epithelial cells, and UspA1-bearing OMVs were found to specifically downregulate the reaction. When mice were exposed to OMVs, a pulmonary inflammation was clearly seen. Our findings indicate that Moraxella OMVs are highly biologically active, transport main bacterial virulence factors and may modulate the epithelial pro-inflammatory response.  相似文献   

11.
Pathogenic bacteria often produce proteinases that are believed to be involved in virulence. Moreover, several host defence systems depend on proteolysis, demonstrating that proteolysis and its regulation play an important role during bacterial infections. Here, we discuss how proteolytical events are regulated at the surface of Streptococcus pyogenes during infection with this important human pathogen. Streptococcus pyogenes produces proteinases, and host proteinases are produced and released as a result of the infection. Streptococcus pyogenes also recruits host proteinase inhibitors to its surface, suggesting that proteolysis is tightly regulated at the bacterial surface. We propose that the initial phase of a S. pyogenes infection is characterized by inhibition of proteolysis and complement activity at the bacterial surface. This is achieved mainly through binding of host proteinase inhibitors and complement regulatory proteins to bacterial surface proteins. In a later phase of the infection, massive proteolytic activity will release bacterial surface proteins and degrade human tissues, thus facilitating bacterial spread. These proteolytic events are regulated both temporally and spatially, and should influence virulence and the outcome of S. pyogenes infections.  相似文献   

12.
Bacterial virulence as a target for antimicrobial chemotherapy   总被引:3,自引:0,他引:3  
As bacterial resistance to currently used antibiotics increases, so too must efforts to identify novel agents and strategies for the prevention and treatment of bacterial infection. In the past, antimicrobial drug discovery efforts have focused on eradicating infection by either cidal or static agents, resulting in clearance of the bacterium from the infected host. To this end, drug discovery targets have been those proteins or processes essential for bacterial cell viability. However, inhibition of the interaction between the bacterium and its host may also be a target. During establishment of an infection, pathogenic bacteria use carefully regulated pathways of conditional gene expression to transition from a free-living form to one that must adapt to the host milieu. This transition requires the regulated production of both extracellular and cell-surface molecules, often termed virulence factors. As the biological imperatives of the invading organism change during the course of an infection, the expression of these factors is altered in response to environmental cues. These may be changes in the host environment, for example, pH, metabolites, metal ions, osmolarity, and temperature. Alternatively, effector molecules produced by the bacterium to sense changing cell density can also lead to changes in virulence gene expression. Although the mechanisms of pathogenesis among different bacteria vary, the principles of virulence are generally conserved. Bacterial virulence may therefore offer unique opportunities to inhibit the establishment of infection or alter its course as a method of antimicrobial chemotherapy.  相似文献   

13.
Despite progress in mouse models of brucellosis, much remains unknown regarding Brucella dissemination and tissue localization. Here, we report the dynamics of Brucella infection in individual mice using bioluminescent Brucella melitensis. Bioluminescent imaging of infected interferon regulatory factor-1 knockout (IRF-1(-/-)) mice identified acute infection in many tissues. Brucella was found to replicate in the salivary glands of IRF-1(-/-) and wild-type C57BL/6 mice suggesting a previously unknown tissue preference. Establishing a niche in this region may have relevance in humans where infection can result from ingestion of few bacteria. Sublethal infection of IRF-1(-/-) mice resulted in chronic Brucella localization in tail joints, an infection parallel to osteoarticular brucellosis in humans. Importantly, bioluminescent imaging rapidly identified attenuated EZ::TN/lux mutants in infected mice and revealed differences in dissemination, thereby defining the contribution of Brucella genes to virulence and tissue localization. Surprisingly, a virB mutant, though defective in persistence, disseminated similarly to virulent Brucella, suggesting bacterial spread is independent of VirB proteins that are important for intracellular survival. Together, our results reveal kinetics of acute and chronic Brucella infection in individual mice that parallels human infection as well as readily identified attenuated bacteria. Our approach facilitates identifying virulence determinants that may control tissue specific replication and may help develop therapeutics to overcome Brucella-induced chronic debilitating conditions.  相似文献   

14.
Ubiquitylation participates in a repertoire of reversible post-translational modifications that modulate the function, localization and half-life of proteins by regulating their association with various ubiquitin-binding proteins. In response to pathogen infection, bacterial effectors impact ubiquitin and ubiquitin-like modifications of key proteins in immune and anti-apoptotic signaling cascades. Certain bacteria corrupt the ubiquitylation machinery in order to regulate their virulence factors spatially and temporally or to trigger internalization of bacteria into host cells. Several new examples of how bacterial factors target ubiquitin and ubiquitin-like regulation emphasize the importance of modulating ubiquitin signaling to establish either long-lasting or devastating relationships of bacteria with their hosts.  相似文献   

15.
Signal transduction and virulence regulation in human and animal pathogens   总被引:9,自引:0,他引:9  
Abstract Pathogens have developed many strategies for survival in animals and humans which possess very effective defense mechanisms. Although there are many different ways, in which pathogenic bacteria solved the problem to overcome the host defense, some common features of virulence mechanisms can be detected even in phylogenetically very distant bacteria (Finlay and Falkow (1989) Microb. Rev. 6 1375–1383). One important feature is that the regulation of expression of virulence factors and the exact timing of their expression is very important for many of the pathogenic bacteria, as most of them have to encounter different growth situations during an infection cycle, which require a fast adaptation to the new situation by the expression of different factors. This review gives an overview about the mechanisms used by pathogenic bacteria to accomplish the difficult task of regulation of their virulence potential in response to environmental changes. In addition, the relationship of these virulence regulatory systems with other signal transduction mechanisms not involved in pathogenicity is discussed.  相似文献   

16.
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.  相似文献   

17.
18.
Iron and virulence in Shigella   总被引:13,自引:3,他引:10  
Iron limitation, a condition encountered within mammalian hosts, induces the synthesis of a number of proteins in pathogenic Shigella species. These include several outer membrane proteins, Shiga toxin, and proteins involved in the biosynthesis and transport of high-affinity iron-binding compounds or siderophores. Although siderophores have been shown to play a major role in the virulence of some bacterial pathogens, these compounds do not appear to be essential for the virulence of Shigella species. Unlike those pathogens which are restricted to the extracellular compartments of the host, the Shigella species invade and multiply within host cells. Alternative iron-acquisition systems, such as the ability to utilize haem-iron, permit growth of the intracellular bacteria. Virulent shigellae also possess a cell-surface haem-binding protein, and synthesis of this protein correlates with infectivity and virulence. This protein does not appear to be involved in iron acquisition. Rather, it may allow the bacteria to coat themselves with haem compounds, thus enhancing their ability to interact with target host cells.  相似文献   

19.
Using model systems in infection biology has led to the discoveries of many pathogen-encoded virulence factors and critical host immune factors to fight pathogenic infections. Studies of the remarkable Pseudomonas aeruginosa bacterium that infects and causes disease in hosts as divergent as humans and plants afford unique opportunities to shed new light on virulence strategies and host defence mechanisms. One of the rationales for using model systems as a discovery tool to characterise bacterial factors driving human infection outcomes is that many P. aeruginosa virulence factors are required for pathogenesis in diverse different hosts. On the other side, many host signalling components, such as the evolutionarily conserved mitogen-activated protein kinases, are involved in immune signalling in a diverse range of hosts. Some model organisms that have less complex immune systems also allow dissection of the direct impacts of innate immunity on host defence without the interference of adaptive immunity. In this review, we start with discussing the occurrence of P. aeruginosa in the environment and the ability of this bacterium to cause disease in various hosts as a natural opportunistic pathogen. We then summarise the use of some model systems to study host defence and P. aeruginosa virulence.  相似文献   

20.
Plants are resistant to most potentially pathogenic microbes. This forces plant pathogens to develop sophisticated strategies to overcome basic plant resistance, either by masking intrusion or by suppression of host defences. This is particularly true for fungal pathogens, which establish long lasting interactions with living host tissue, without causing visible damage to invaded cells. The interactions of cereal crops and Arabidopsis with powdery mildew fungi are model systems for understanding host resistance. Currently, these systems are also promoting the understanding of fungal infection by identifying fungal pathogenicity and virulence factors and host target sites. This minireview focuses on recent findings about host susceptibility and the way powdery mildew fungi might induce it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号