首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The proteins of 14‐3‐3 family are substantially involved in the regulation of many biological processes including the apoptosis. We studied the changes in the expression of five 14‐3‐3 isoforms (β, γ, ε, τ, and ζ) during the apoptosis of JURL‐MK1 and K562 cells. The expression level of all these proteins markedly decreased in relation with the apoptosis progression and all isoforms underwent truncation, which probably corresponds to the removal of several C‐terminal amino acids. The observed 14‐3‐3 modifications were partially blocked by caspase‐3 inhibition. In addition to caspases, a non‐caspase protease is likely to contribute to 14‐3‐3's cleavage in an isoform‐specific manner. While 14‐3‐3 γ seems to be cleaved mainly by caspase‐3, the alternative mechanism is essentially involved in the case of 14‐3‐3 τ, and a combined effect was observed for the isoforms ε, β, and ζ. We suggest that the processing of 14‐3‐3 proteins could form an integral part of the programmed cell death or at least of some apoptotic pathways. J. Cell. Biochem. 106: 673–681, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
5.
6.
7.
Matriptase is an epithelia‐specific membrane‐anchored serine protease, and its dysregulation is highly related to the progression of a variety of cancers. Hepatocyte growth factor activator inhibitor‐1 (HAI‐1) inhibits matriptase activity through forming complex with activated matriptase. The balance of matriptase activation and matriptase/HAI‐1 complex formation determines the intensity and duration of matriptase activity. 3‐Cl‐AHPC, 4‐[3‐(1‐adamantyl)‐4‐hydroxyphenyl]‐3‐chlorocinnamic acid, is an adamantly substituted retinoid‐related molecule and a ligand of retinoic acid receptor γ (RARγ). 3‐Cl‐AHPC is of strong anti‐cancer effect but with elusive mechanisms. In our current study, we show that 3‐Cl‐AHPC time‐ and dose‐ dependently induces matriptase/HAI‐1 complex formation, leading to the suppression of activated matriptase in cancer cells and tissues. Furthermore, 3‐Cl‐AHPC promotes matriptase shedding but without increasing the activity of shed matriptase. Moreover, 3‐Cl‐AHPC inhibits matriptase‐mediated cleavage of pro‐HGF through matriptase/HAI‐1 complex induction, resulting in the suppression of pro‐HGF‐stimulated signalling and cell scattering. Although 3‐Cl‐AHPC binds to RARγ, its induction of matriptase/HAI‐1 complex is not RARγ dependent. Together, our data demonstrates that 3‐Cl‐AHPC down‐regulates matriptase activity through induction of matriptase/HAI‐1 complex formation in a RARγ‐independent manner, providing a mechanism of 3‐Cl‐AHPC anti‐cancer activity and a new strategy to inhibit abnormal matriptase activity via matriptase/HAI‐1 complex induction using small molecules.  相似文献   

8.
This article describes an application of the host‐guest chiral recognition approach called tweezer methodology for the determination of the absolute configuration of 3‐hydroxy‐β‐lactams. These substrates represent challenging cases due to their chemical reactivity, the presence of multiple stereogenic centers and several functional groups which offer various possibilities of binding to the Zn‐porphyrin host. OPLS‐2005, the force field used in this work to predict the interporphyrin twist, modeled correctly the host‐guest complexation mechanism and revealed conformational details of the bound substrates. The computational study also suggested that in cases where an increase in the magnitude of the stereodifferentiation and an intense experimental CD are observed, the bound conformation of the conjugates are hydrogen bonded. The present investigation provides evidence that when the tweezer method is assisted by the OPLS‐2005 based computational approach, it can be successfully applied to the configurational and conformational elucidation of multi‐functional compounds with multiple stereogenic centers. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
Atrial fibrillation (AF) is the most common type of arrhythmia in cardiovascular diseases. Atrial fibrosis is an important pathophysiological contributor to AF. This study aimed to investigate the role of the clustered miR‐23b‐3p and miR‐27b‐3p in atrial fibrosis. Human atrial fibroblasts (HAFs) were isolated from atrial appendage tissue of patients with sinus rhythm. A cell model of atrial fibrosis was achieved in Ang‐II‐induced HAFs. Cell proliferation and migration were detected. We found that miR‐23b‐3p and miR‐27b‐3p were markedly increased in atrial appendage tissues of AF patients and in Ang‐II‐treated HAFs. Overexpression of miR‐23b‐3p and miR‐27b‐3p enhanced the expression of collagen, type I, alpha 1 (COL1A1), COL3A1 and ACTA2 in HAFs without significant effects on their proliferation and migration. Luciferase assay showed that miR‐23b‐3p and miR‐27b‐3p targeted two different sites in 3?‐UTR of transforming growth factor (TGF)‐β1 receptor 3 (TGFBR3) respectively. Consistently, TGFBR3 siRNA could increase fibrosis‐related genes expression, along with the Smad1 inactivation and Smad3 activation in HAFs. Additionally, overexpression of TGFBR3 could alleviate the increase of COL1A1, COL3A1 and ACTA2 in HAFs after transfection with miR‐23b‐3p and miR‐27b‐3p respectively. Moreover, Smad3 was activated in HAFs in response to Ang‐II treatment and inactivation of Smad3 attenuated up‐regulation of miR‐23b‐3p and miR‐27b‐3p in Ang‐II‐treated HAFs. Taken together, these results suggest that the clustered miR‐23b‐3p and miR‐27b‐3p consistently promote atrial fibrosis by targeting TGFBR3 to activate Smad3 signalling in HAFs, suggesting that miR‐23b‐3p and miR‐27b‐3p are potential therapeutic targets for atrial fibrosis.  相似文献   

11.
12.
Sevoflurane is the most widely used anaesthetic administered by inhalation. Exposure to sevoflurane in neonatal mice can induce learning deficits and abnormal social behaviours. MicroRNA (miR)‐27a‐3p, a short, non‐coding RNA that functions as a tumour suppressor, is up‐regulated after inhalation of anaesthetic, and peroxisome proliferator‐activated receptor γ (PPAR‐γ) is one of its target genes. The objective of this study was to investigate how the miR‐27a‐3p–PPAR‐γ interaction affects sevoflurane‐induced neurotoxicity. A luciferase reporter assay was employed to identify the interaction between miR‐27a‐3p and PPAR‐γ. Primary hippocampal neuron cultures prepared from embryonic day 0 C57BL/6 mice were treated with miR‐27a‐3p inhibitor or a PPAR‐γ agonist to determine the effect of miR‐27a‐3p and PPAR‐γ on sevoflurane‐induced cellular damage. Cellular damage was assessed by a flow cytometry assay to detect apoptotic cells, immunofluorescence to detect reactive oxygen species, western blotting to detect NADPH oxidase 1/4 and ELISA to measure inflammatory cytokine levels. In vivo experiments were performed using a sevoflurane‐induced anaesthetic mouse model to analyse the effects of miR‐27a‐3p on neurotoxicity by measuring the number of apoptotic neurons using the Terminal‐deoxynucleoitidyl Transferase Mediated Nick End Labeling (TUNEL) method and learning and memory function by employing the Morris water maze test. Our results revealed that PPAR‐γ expression was down‐regulated by miR‐27a‐3p following sevoflurane treatment in hippocampal neurons. Down‐regulation of miR‐27a‐3p expression decreased sevoflurane‐induced hippocampal neuron apoptosis by decreasing inflammation and oxidative stress‐related protein expression through the up‐regulation of PPAR‐γ. In vivo tests further confirmed that inhibition of miR‐27a‐3p expression attenuated sevoflurane‐induced neuronal apoptosis and learning and memory impairment. Our findings suggest that down‐regulation of miR‐27a‐3p expression ameliorated sevoflurane‐induced neurotoxicity and learning and memory impairment through the PPAR‐γ signalling pathway. MicroRNA‐27a‐3p may, therefore, be a potential therapeutic target for preventing or treating sevoflurane‐induced neurotoxicity.

  相似文献   

13.
Recent studies have reported that three‐dimensionally cultured cells have more physiologically relevant functions than two‐dimensionally cultured cells. Cells are three‐dimensionally surrounded by the extracellular matrix (ECM) in complex in vivo microenvironments and interact with the ECM and neighboring cells. Therefore, replicating the ECM environment is key to the successful cell culture models. Various natural and synthetic hydrogels have been used to mimic ECM environments based on their physical, chemical, and biological characteristics, such as biocompatibility, biodegradability, and biochemical functional groups. Because of these characteristics, hydrogels have been combined with microtechnologies and used in organ‐on‐a‐chip applications to more closely recapitulate the in vivo microenvironment. Therefore, appropriate hydrogels should be selected depending on the cell types and applications. The porosity of the selected hydrogel should be controlled to facilitate the movement of nutrients and oxygen. In this review, we describe various types of hydrogels, external stimulation‐based gelation of hydrogels, and control of their porosity. Then, we introduce applications of hydrogels for organ‐on‐a‐chip. Last, we also discuss the challenges of hydrogel‐based three‐dimensional cell culture techniques and propose future directions. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:580–589, 2017  相似文献   

14.
The gas chromatographic separation of enantiomers of 2‐Br carboxylic acid derivatives was studied on four different 6‐TBDMS‐2,3‐di‐O‐alkyl‐ β‐ and ‐γ‐CD stationary phases. The differences in thermodynamic data {ΔH and –ΔS} for the 15 structurally related racemates were evaluated. The influence of structure differences in the alkyl substituents covalently attached to the stereogenic carbon atom, as well as in the ester group of the homologous analytes, and the selectivity of modified β‐ and γ‐ cyclodextrin derivatives was studied in detail. The cyclodextrin cavity size, as well as elongation of alkyl substituents in positions 2 and 3 of 6‐TBDMS‐β‐CD, also affected their selectivity. The quality of enantiomeric separations is influenced mainly by alkyl chains of the ester group of the molecule and this appears to be independent of the CD stationary phase used. In some cases the separations occur as the result of external adsorption rather than inclusion complexations with the chiral selector. It was found that the temperature dependencies of the selectivity factor were nonlinear. Chirality 26:279–285, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
16.
Diabetic nephropathy is a leading cause of end‐stage renal disease globally. The vital role of circular RNAs (circRNAs) has been reported in diabetic nephropathy progression, but the molecular mechanism linking diabetic nephropathy to circRNAs remains elusive. In this study, we investigated the significant function of circ‐AKT3/miR‐296‐3p/E‐cadherin regulatory network on the extracellular matrix accumulation in mesangial cells in diabetic nephropathy. The expression of circ‐AKT3 and fibrosis‐associated proteins, including fibronectin, collagen type I and collagen type IV, was assessed via RT‐PCR and Western blot analysis in diabetic nephropathy animal model and mouse mesangial SV40‐MES13 cells. Luciferase reporter assays were used to investigate interactions among E‐cadherin, circ‐AKT3 and miR‐296‐3p in mouse mesangial SV40‐MES13 cells. Cell apoptosis was evaluated via flow cytometry. The level of circ‐AKT3 was significantly lower in diabetic nephropathy mice model group and mouse mesangial SV40‐MES13 cells treated with high‐concentration (25 mmol/L) glucose. In addition, circ‐AKT3 overexpression inhibited the level of fibrosis‐associated protein, such as fibronectin, collagen type I and collagen type IV. Circ‐AKT3 overexpression also inhibited the apoptosis of mouse mesangial SV40‐MES13 cells treated with high glucose. Luciferase reporter assay and bioinformatics tools identified that circ‐AKT3 could act as a sponge of miR‐296‐3p and E‐cadherin was the miR‐296‐3p direct target. Moreover, circ‐AKT3/miR‐296‐3p/E‐cadherin modulated the extracellular matrix of mouse mesangial cells in high‐concentration (25 mmol/L) glucose, inhibiting the synthesis of related extracellular matrix protein. In conclusion, circ‐AKT3 inhibited the extracellular matrix accumulation in diabetic nephropathy mesangial cells through modulating miR‐296‐3p/E‐cadherin signals, which might offer novel potential opportunities for clinical diagnosis targets and therapeutic biomarkers for diabetic nephropathy.  相似文献   

17.
18.
3‐Hydroxy‐3‐methylglutaryl‐coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild‐type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up‐regulated several genes in sterol biosynthesis and increased sterol content. Recombinant S359A had earlier displayed a 10‐fold higher in vitro enzyme activity. Furthermore, tobacco HMGS overexpressors (OEs) exhibited improved sterol content, plant growth and seed yield. Increased growth and seed yield in tobacco OE‐S359A over OE‐wtBjHMGS1 coincided with elevations in NtSQS expression and sterol content. Herein, the overexpression of wt and mutant (S359A) BjHMGS1 in a crop plant, tomato (Solanum lycopersicum), caused an accumulation of MVA‐derived squalene and phytosterols, as well as methylerythritol phosphate (MEP)‐derived α‐tocopherol (vitamin E) and carotenoids, which are important to human health as antioxidants. In tomato HMGS‐OE seedlings, genes associated with the biosyntheses of C10, C15 and C20 universal precursors of isoprenoids, phytosterols, brassinosteroids, dolichols, methylerythritol phosphate, carotenoid and vitamin E were up‐regulated. In OE‐S359A tomato fruits, increased squalene and phytosterol contents over OE‐wtBjHMGS1 were attributed to heightened SlHMGR2, SlFPS1, SlSQS and SlCYP710A11 expression. In both tomato OE‐wtBjHMGS1 and OE‐S359A fruits, the up‐regulation of SlGPS and SlGGPPS1 in the MEP pathway that led to α‐tocopherol and carotenoid accumulation indicated cross‐talk between the MVA and MEP pathways. Taken together, the manipulation of BjHMGS1 represents a promising strategy to simultaneously elevate health‐promoting squalene, phytosterols, α‐tocopherol and carotenoids in tomato, an edible fruit.  相似文献   

19.
Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN‐γ on melanogenesis were investigated. IFN‐γ inhibits basal and α‐MSH‐induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN‐γ. IFN‐γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN‐γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN‐γ inhibits both basal and α‐MSH‐induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN‐γ in α‐MSH‐induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN‐γ plays a role in controlling inflammation‐ or UV‐induced pigmentary changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号