首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel chiral sensor based on the self‐assembled monolayer of (6A‐ω‐mercaptoethylureado‐6A‐deoxy)heptakis(2,3‐di‐o‐phenylcarbamoyl)‐6B, 6C, 6D, 6E, 6F, 6G‐ hexa‐o‐phenylcarbamoyl‐β‐cyclodextrin (Ph‐β‐CD‐SH) on a quartz crystal transducer for chiral recognition was set up. (R,S)‐(±)‐(3‐Methoxyphenyl)ethylamine were recognized by this QCM chiral sensor with a QCM chiral discrimination factor of 1.33. Furthermore, UV spectroscopy was used to investigate the mechanism of host‐guest interactions between (6A‐azido‐6A‐deoxy)heptakis(2,3‐di‐o‐phenylcarbamoyl)‐6B, 6C, 6D, 6E, 6F, 6G‐hexa‐o‐phenylcarbamoyl‐β‐cyclodextrin (Ph‐β‐CD) and (R,S)‐(±)‐(3‐methoxyphenyl) ethylamine. The UV discrimination factor was determined to be 0.066. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
Mutations in TRPM1, a calcium channel expressed in retinal bipolar cells and epidermal melanocytes, cause complete congenital stationary night blindness with no discernible skin phenotype. In the retina, TRPM1 activity is negatively coupled to metabotropic glutamate receptor 6 (mGluR6) signaling through Gαo and TRPM1 mutations result in the loss of responsiveness of TRPM1 to mGluR6 signaling. Here, we show that human melanocytes express mGluR6, and treatment of melanocytes with L‐AP4, a type III mGluR‐selective agonist, enhances Ca2+ uptake. Knockdown of TRPM1 or mGluR6 by shRNA abolished L‐AP4‐induced Ca2+ influx and TRPM1 currents, showing that TRPM1 activity in melanocytes is positively coupled to mGluR6 signaling. Gαo protein is absent in melanocytes. However, forced expression of Gαo restored negative coupling of TRPM1 to mGluR6 signaling, but treatment with pertussis toxin, an inhibitor of Gi/Go proteins, did not affect basal or mGluR6‐induced Ca2+ uptake. Additionally, chronic stimulation of mGluR6 altered melanocyte morphology and increased melanin content. These data suggest differences in coupling of TRPM1 function to mGluR6 signaling explain different cellular responses to glutamate in the retina and the skin.  相似文献   

3.
4.
Al Arsh Basheer  Imran Ali 《Chirality》2018,30(9):1088-1095
The environmental stereoselective uptake and degradation of (±)‐o,p‐DDD pesticide stereomers in water‐sediment system are described. The results were analyzed by artificial neural network model. The optimized experimental parameters were concentration of o,p‐DDD streamers (7.0 μg L?1), experimental time (60 min), pH (6), dose (5.0 g L?1), and temperature (25°C). The maximum uptake and degradation were 87% and 85% and 33.0% and 30.5% for (?)‐ and (+)‐stereomers of o,p‐DDD in 15‐day time. Both uptake and degraded phenomenon showed first‐order rate reaction. Thermodynamic variables indicated exothermic nature of uptake and degradation processes. The uptake and degradation were slightly higher for (?)‐stereomer than (+)‐stereomer of o,p‐DDD. It was assumed that both uptake and degradation processes are accountable for the removal of the streomers of o,p‐DDD from earth's ecosystem, but the uptake is responsible for major contribution. The magnitudes of relative errors obtained by artificial neural network model were in the range of ±0.2 to 3.5, indicating good applicability of the experimental data. The results are very useful to control the environmental contamination due to the chiral o,p‐DDD pesticide as its two enantiomers have different ecological toxicities.  相似文献   

5.
The frequency dependences of the storage and loss shear moduli, G′ and G″, of pronase-treated collagen dissolved in acetate buffer at pH 4.0 were measured at 17.0°C by use of the Birnboim-Schrag multiple lumped resonator apparatus. Some of the solutions contained 70% glycerol. The infinite-dilution moduli were determined and compared with theoretical models for a rigid cylinder and a semiflexible rod. Only the latter could fit the data. A rotational time of 144 μs and a slowest flexural relaxation time of 21 μs, both reduced to water at 20°C, were determined from the fit. The intrinsic viscosity and rotational relaxation time correspond to a semiflexible rod with persistence length of about 170 nm and a Young's modulus of 4 × 1010 dyn/cm2.  相似文献   

6.
Spectrofluoremetric technique was employed to study the binding behavior of hydralazine with bovine serum albumin (BSA) at different temperatures. Binding study of bovine serum albumin with hydralazine has been studied by ultraviolet–visible spectroscopy, fluorescence spectroscopy and confirmed by three‐dimensional, synchronous, circular dichroism, and Raman spectroscopic methods. Effect of β‐cyclodextrin on binding was studied. The experimental results showed a static quenching mechanism in the interaction of hydralazine with bovine serum albumin. The binding constant and the number of binding sites are calculated according to Stern–Volmer equation. The thermodynamic parameters ?Ho, ?Go, ?So at different temperatures were calculated. These indicated that the hydrogen bonding and weak van der Waals forces played an important role in the interaction. Based on the Förster's theory of non‐radiation energy transfer, the binding average distance, r, between the donor (BSA) and acceptor (hydralazine) was evaluated and found to be 3.95 nm. Spectral results showed that the binding of hydralazine to BSA induced conformational changes in BSA. The effect of common ions on the binding of hydralazine to BSA was also examined. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Isotherms of the EtBr adsorption on native and denatured poly(dA)poly(dT) in the temperature interval 20–70°C were obtained. The EtBr binding constants and the number of binding sites were determined. The thermodynamic parameters of the EtBr intercalation complex upon changes of solution temperature 20–48°C were calculated: 1.0·106 M−1K≤1.4·106 M−1, free energy ΔG o=−8.7±0.3 kcal/mol, enthalpy ΔH o≅0, and entropy ΔS o=28±0.5 cal/(mol deg). UV melting has shown that the melting temperature (T m) of EtBr-poly(dA)poly(dT) complexes (μ=0.022,4.16·10−5 M EtBr) increased by 17°C as compared with the ΔT m of free homopolymer, whereas the half-width of the transition (T m) is not changed. It was shown for the first time that EtBr forms complexes of two types on single-stranded regions of poly(dA)poly(dT) denatured at 70°C: strong (K 1=1.7·105 M−1; ΔG o=−8.10±0.03 kcal/mol) and weak (K 2=2.9·103 M−1; ΔG o=−6.0±0.3 kcal/mol).The ΔG o of the strong and weak complexes was independent of the solution ionic strength, 0.0022≤μ≤0.022. A model of EtBr binding with single-stranded regions of poly(dA)poly(dT) is discussed.  相似文献   

8.
Fan LM  Wang YF  Wu WH 《Protoplasma》2003,220(3-4):143-152
Summary.  Patch-clamp whole-cell and single-channel recording techniques were used to investigate the regulation of outward K+ channels by external and internal protons in Brassica chinensis pollen protoplasts. Outward K+ currents and conductance were insensitive to external pH (pHo) except at pH 4.5. Maximal conductance (G max) for the outward K+ currents was inhibited at acidic external pH. Half-activation voltage (E 1/2) for the outward K+ currents shifted to more positive voltages along with the decrease in pHo. E 1/2 can be described by a modified Henderson–Hasselbalch equation expected from a single titratable binding site. The activation kinetics of the outward K+ channels was largely insensitive to pHo. An internal pH (pHi) of 4.5 significantly increased outward K+ currents and conductance. G max for the outward K+ currents decreased with elevations in pHi. In contrast to the effect of pHo, E 1/2 was shifted to more positive voltages with elevations in pHi. The outward K+ currents, G max and E 1/2 can be described by the modified Henderson–Hasselbalch equation. Furthermore, acidifying pHi accelerated the activation of the outward K+ currents significantly. The differences in electro-physiological properties among previously reported and currently described plant outward K+ channels may reflect differences in the structure of these channels. Received May 7, 2002; accepted July 9, 2002; published online November 29, 2002  相似文献   

9.
Based on the recently constructed Escherichia coli itaconic acid production strain ita23, we aimed to improve the productivity by applying a two‐stage process strategy with decoupled production of biomass and itaconic acid. We constructed a strain ita32 (MG1655 ΔaceA Δpta ΔpykF ΔpykA pCadCs), which, in contrast to ita23, has an active tricarboxylic acid (TCA) cycle and a fast growth rate of 0.52 hr?1 at 37°C, thus representing an ideal phenotype for the first stage, the growth phase. Subsequently we implemented a synthetic genetic control allowing the downregulation of the TCA cycle and thus the switch from growth to itaconic acid production in the second stage. The promoter of the isocitrate dehydrogenase was replaced by the Lambda promoter (pR) and its expression was controlled by the temperature‐sensitive repressor CI857 which is active at lower temperatures (30°C). With glucose as substrate, the respective strain ita36A grew with a fast growth rate at 37°C and switched to production of itaconic acid at 28°C. To study the impact of the process strategy on productivity, we performed one‐stage and two‐stage bioreactor cultivations. The two‐stage process enabled fast formation of biomass resulting in improved peak productivity of 0.86 g/L/hr (+48%) and volumetric productivity of 0.39 g/L/hr (+22%) in comparison to the one‐stage process. With our dynamic production strain, we also resolved the glutamate auxotrophy of ita23 and increased the itaconic acid titer to 47 g/L. The temperature‐dependent activation of gene expression by the Lambda promoters (pR/pL) has been frequently used to improve protein or, in a few cases, metabolite production in two‐stage processes. Here we demonstrate that the system can be as well used in the opposite direction to selectively knock‐down an essential gene (icd) in E. coli to design a two‐stage process for improved volumetric productivity. The control by temperature avoids expensive inducers and has the potential to be generally used to improve cell factory performance.
  相似文献   

10.
The storage and loss shear moduli, G′ and G″, have been measured for dilute solutions of unaggregated and aggregated tobacco mosaic virus samples in glycerol–water mixtures, by the Birnboim–Schrag multiple-lumped resonator modified for use with aqueous solvents. The frequency range was 100–5800 Hz, the concentration range 0.6–2.1 × 10?3 g/ml, and the temperatures 25.0° and 37.8°C. The number-average and weight-average molecular weights of the aggregated sample were estimated as 1.4 and 2.0 × 108, respectively, from electron microscopy. The extrapolated intrinsic moduli [G′] and [G″] were compared with the predictions of the Kirkwood–Auer theory for rigid rodlike molecules. For the unaggregated sample, the frequency dependence of [G′] and [G″] agreed well with the theory assuming the intrinsic viscosity to be 27 ml/g, though the asymptotic limit of [G′]M/RT at higher frequencies was slightly larger than the theoretical value of 3/5. For the aggregated sample, the data agreed with theory for rigid rods as modified to account for molecular-weight distribution.  相似文献   

11.
Compound‐specific 15N analysis of amino acids (AAs) is a powerful tool to determine the trophic position (TP) of organisms. However, it has only been used in a few studies of avian ecology because the AA patterns in the consumer‐diet nitrogen trophic discrimination factor (TDFGlu‐Phe = ?15NGlu??15NPhe) were unknown in birds until recently, and tropical seabirds have never been investigated with this methodology. Here, we explore the application of this method to tropical seabirds. In this study, we recovered the fossilized bones of tropical seabirds from ornithogenic sediments on two coral islands in the Xisha Islands, South China Sea, as well as the bones and muscle of their predominant food source, flying fish (Exocoetus volitans). Compound‐specific 15N and 13C analyses of AAs in both seabird and fish bone collagen were conducted. The TP of flying fish was calculated based on a widely used single TDFGlu‐Phe approach. We then calculated the TP of tropical seabirds in three different ways: (a) according to the composition of their diet; (b) based on the single TDFGlu‐Phe approach; and (c) using a multi‐TDFGlu‐Phe approach. The results of the multi‐TDFGlu‐Phe approach were much closer to the results based on the composition of the seabird diet than the results of the single TDFGlu‐Phe approach, confirming its applicability for tropical seabirds. For seabird bone samples of different ages, TP determined from the multi‐TDFGlu‐Phe approach was most similar to that of bulk δ15N of bird collagen, with seabirds occupying higher TPs during the Little Ice Age, as previously shown. In addition, the 13C Suess effect was reflected in the AAs δ13C in our samples. This study applied a compound‐specific 15N analysis of AAs to determine the TP of tropical seabirds that has potential to extend to all tropical seabirds many of which are widely distributed and play a key role in the evolution of coral island ecosystems.  相似文献   

12.
Abstract: The identity and role of G proteins in coupling adenosine receptors to effectors have been studied to a limited degree. We have identified the G proteins whose GTPase activity is stimulated by adenosine receptor agonists in neuronal membranes. (R)-Phenylisopropyladenosine, 2-chloroadenosine, and N-ethylcarboxamideadenosine produced a concentration-dependent stimulation of GTPase. At 10?5M, the increase above basal GTPase in frontal cortex was 25 ± 4, 20 ± 3, and 8 ± 1%, respectively, and in the cerebellum 55 ± 2, 41 ± 4, and 22 ± 2%, respectively. The effects of (R)-phenylisopropyladenosine and 2-chloroadenosine were inhibited by (1) A1 antagonists (76–96% reduction), (2) pretreatment with pertussis toxin (90–100% reduction), and (3) antibodies raised against the α-subunit of Gi and Go (55–57% reduction by each), suggesting that A1 receptors interact equally with Gi and Go. (R)-Phenylisopropyladenosine increased the binding of a nonhydrolyzable analogue of GTP to membranes in a pertussis toxin-sensitive manner, indicative of activation of Gi or Go. Previously, (±)-Bay K 8644 enhanced GTP hydrolysis by Go but not Gi. Now we report a profound synergistic stimulation of GTPase in the presence of (R)-phenylisopropyladenosine and (±)-Bay K 8644 (10?7 to 10?5M). (±)-Bay K 8644 had no effect on nucleotide exchange and, thus, cannot activate Go. It appears that a positive cooperative stimulation of Go occurs when it is first activated by A1 receptors and subsequently interacts with the L-type Ca2+ channel.  相似文献   

13.
Bioenergy crops are expected to provide biomass to replace fossil resources and reduce greenhouse gas emissions. In this context, changes in soil organic carbon (SOC) stocks are of primary importance. The aim of this study was to measure changes in SOC stocks in bioenergy cropping systems comparing perennial (Miscanthus × giganteus and switchgrass), semi‐perennial (fescue and alfalfa), and annual (sorghum and triticale) crops, all established after arable crops. The soil was sampled at the start of the experiment and 5 or 6 years later. SOC stocks were calculated at equivalent soil mass, and δ13C measurements were used to calculate changes in new and old SOC stocks. Crop residues found in soil at the time of SOC measurements represented 3.5–7.2 t C ha?1 under perennial crops vs. 0.1–0.6 t C ha?1 for the other crops. During the 5‐year period, SOC concentrations under perennial crops increased in the surface layer (0–5 cm) and slightly declined in the lower layers. Changes in δ13C showed that C inputs were mainly located in the 0–18 cm layer. In contrast, SOC concentrations increased over time under semi‐perennial crops throughout the old ploughed layer (ca. 0–33 cm). SOC stocks in the old ploughed layer increased significantly over time under semi‐perennials with a mean increase of 0.93 ± 0.28 t C ha?1 yr?1, whereas no change occurred under perennial or annual crops. New SOC accumulation was higher for semi‐perennial than for perennial crops (1.50 vs. 0.58 t C ha?1 yr?1, respectively), indicating that the SOC change was due to a variation in C input rather than a change in mineralization rate. Nitrogen fertilization rate had no significant effect on SOC stocks. This study highlights the interest of comparing SOC changes over time for various cropping systems.  相似文献   

14.
Secretory vesicle swelling is required for vesicular discharge during cell secretion. The Gαo‐mediated water channel aquaporin‐6 (AQP‐6) involvement in synaptic vesicle (SV) swelling in neurons has previously been reported. Studies demonstrate that in the presence of guanosine triphosphate (GTP), mastoparan, an amphiphilic tetradecapeptide from wasp venom, activates Go protein GTPase, and stimulates SV swelling. Stimulation of G proteins is believed to occur via insertion of mastoparan into the phospholipid membrane to form a highly structured α‐helix that resembles the intracellular loops of G protein‐coupled adrenergic receptors. Consequently, the presence of adrenoceptors and the presence of an endogenous β‐adrenergic agonist at the SV membrane is suggested. Immunoblot analysis of SV using β‐adrenergic receptor antibody, and vesicle swelling experiments using β‐adrenergic agonists and antagonists, demonstrate the presence of functional β‐adrenergic receptors at the SV membrane. Since a recent study shows vH+‐ATPase to be upstream of AQP‐6 in the pathway leading from Gαo‐mediated swelling of SV, participation of an endogenous β‐adrenergic agonist, in the binding and stimulation of its receptor to initiate the swelling cascade is demonstrated.  相似文献   

15.
The mechanical properties of gelatin films were studied in relation to the effect of water, and compared with those of collagen films. The S-shaped sorption isotherm was separated into an adsorption curve C1 and dissolution curve C2. From the C2 curve, the interaction parameter χ1 of Flory–Huggins' equation was calculated. The χ1 of gelatin were larger than those of collagen at low relative humidities (RH), while they coincided with each other at high RH. It was found that a composite curve was made by shifting stress relaxation curves obtained at different humidities along the log time axis. The shift factor for the formation of the composite curve was analyzed by Fujita–Kishimoto's equation, which was based on the free volume theory. The parameter β, which expressed the extent of the contribution of sorbed water to the increase in the free volume of the system, was 0.05 in the range of C2 from 0 to 0.08 (0–65% RH). This value was much smaller than 0.16 for collagen. The value was 0.16 in the range of C2 higher than 0.08, which was equal to that of the collagen. Dynamic shear modulus G′, loss modulus G″, and tan δ were determined as functions of RH. The gelatin film extended more than 100% at 73% RH under the very small stress of about 107 dyn/cm2. This corresponds to the region where β changes from 0.05 to 0.16, although such a phenomenon was not observed in the collagen film. The wide-angle X-ray pattern of extended gelatin was similar to that of renatured collagen fiber.  相似文献   

16.
The effects of heating temperature on gel properties and conformational changes were investigated in glycinin and β-conglycinin gels using Theological and Fourier transform ir (FTIR) methods. Solutions of 15 wt % glycinin or β-conglycinin in 35 mM phosphate buffer at pH 7.6 were heated at various temperatures for 30 min and rheological properties were measured at 20°C. The storage modulus G′ as a function of frequency changed from a monotonical decrease with decreasing frequency to a plateau in the range from 0.0018 to 40 Hz by heating at temperatures higher than 80°C for glycinin and 65°C for β-conglycinin. A band at 1618 cm?1 (associated with the β-sheet structure) on ir spectra increased with the formation of heat-induced gels. The value of the storage modulus G′ correlated well with the increase in absorbance at 1618 cm?1. These results suggest that the formation of a β-sheet structure may be closely related to the value of the storage modulus G′ for heat-induced gels in soybean proteins and that heat-induced gels of glycinin and β-conglycinin are formed by cross-links with intermolecular β-sheet structures. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Goα was highly purified from Escherichia coli cotransformed with pQE60 Goα and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goα and the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goα GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goα GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1 ±0.22) ×105 to (4.1±0.43) × 105 (M−1). However, no obvious changes of fluorescence spectra of Goα GTPγS were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

18.
A model is proposed for the d-galactoside-H+(OH) transporter of Escherichia coli that accounts for essentially all the experimental observations established for this system to date. In this model, the functional unit is postulated to be a dimer (consisting of two copies of lacY-specified polypeptide) which spans the membrane with a 2-fold symmetry axis in the membrane plane (Lancaster, J.R. (1978) J. Theor. Biol. 75, 35–50). The functional dimer is assumed to possess a single pore flanked by an inner gate (gi) and an outer gate (go) and encompassing two oppositely oriented galactoside binding sites, designated m and μ. When go is open and gi is closed under non-energized conditions, binding site m adopts a configuration defined as State A (i.e., moA) exhibiting high affinity toward Class Ga galactosides (thiodigalactoside, melibiose, α-p-nitrophenylgalactoside) but low affinity for Class Gb galactosides (lactose, β-o-nitrophenylgalactoside, β-isopropylthiogalactoside), whereas binding site μ adopts State B (i.e., μoB) displaying relatively high affinity toward Class Gb galactosides but comparatively low affinity for Class Ga galactosides; further, each moA : μoB dimer contains one thiol group whose reaction with N-ethylmaleimide inactivates the transporter unless blocked by galactoside binding at site moA, while the second homologous thiol of the dimer is unreactive toward thiol reagents. Translocation of the moA : μoB dimer involves closing of go followed by opening of gi, and causes the two thiols (as well as sites m and μ) to interchange roles in a symmetrical fashion: moA : μoB ↔ miB : μiA. In the presence of a substantial (negative) transmembrane Δμ~H+, the m : μ dimer is postulated to undergo an electrogenic protein conformational change to a second form, *(m : μ), in which both sites m and μ possess low affinity toward internal Class Gb substrates; galactoside transport in both m : μ and *(m : μ) is assumed to be coupled to H+-symport (OH-antiport) with a stoichiometry of approximately 1 : 1. Finally, five characteristic predictions of the half-sites model are outlined for further tests of its validity.  相似文献   

19.
Using NMR magnetization transfer from water and ammonia-catalyzed exchange of the imino protons, changes have been monitored in base-pair kinetics induced by Mg2 +  in two key activity fragments r(CACCUGGCGACAGGUG) and r(GGCCAAAAGCC) of the encephalomyocarditis virus internal ribosome entry site. For r(CACCUGGCGACAGGUG), the addition of Mg2 +  reveals two types of base-pairs: r(U545·A) and r(G546·C), in the first category, have lifetimes only slightly higher in the presence of Mg2 + , whereas their dissociation constants are substantially reduced. This behavior has been termed proximal. The base-pairs r(G553·C) and r(G554·C), in the second category, have lifetimes substantially higher in the presence of Mg2 + , whereas their dissociation constants remain almost constant. This behavior has been termed distal. Mg2 +  has a specific effect on r(CACCUGGCGACAGGUG), the magnitude of which is progressively modulated from the proximal region of the 16-mer towards its distal region. For r(GGCCAAAAGCC), an intermediate behavior is found for base-pairs r(G565·C) and r(G572·C). Their lifetimes are slightly higher in the presence of Mg2 +  and their dissociation constants are significantly lower, a behavior resembling that of the 16-mer proximal region. These results indicate that Mg2 +  diffusively moves around r(GGCCAAAAGCC).  相似文献   

20.
Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G| scaling as (vcv0)ξ. Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue’s surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号