首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The selection of cognate tRNAs during translation is specified by a kinetic discrimination mechanism driven by distinct structural states of the ribosome. While the biochemical steps that drive the tRNA selection process have been carefully documented, it remains unclear how recognition of matched codon:anticodon helices in the small subunit facilitate global rearrangements in the ribosome complex that efficiently promote tRNA decoding. Here we use an in vitro selection approach to isolate tRNATrp miscoding variants that exhibit a globally perturbed tRNA tertiary structure. Interestingly, the most substantial distortions are positioned in the elbow region of the tRNA that closely approaches helix 69 (H69) of the large ribosomal subunit. The importance of these specific interactions to tRNA selection is underscored by our kinetic analysis of both tRNA and rRNA variants that perturb the integrity of this interaction.  相似文献   

2.
Ninio J 《Biochimie》2006,88(8):963-992
Thirty years of kinetic studies on tRNA selection in the elongation cycle are reviewed, and confronted with results derived from various sources, including structural studies on the ribosome, genetic observations on ribosome and EF-Tu accuracy mutants, and codon-specific elongation rates. A coherent framework is proposed, which gives meaning to many puzzling effects. Ribosomal accuracy would be governed by a "double-trigger" principle, according to which the ribosome uses energy in the forward direction to create new configurations for tRNA selection, and energy in the backward direction to regain its initial configuration, in particular after a premature dissociation event. The conformation energy would come in part, in Hopfield's mode, from GTP cleavage on the ternary complex (TC). The reset energy would be provided in part, in the author's mode, from GTP cleavage on a binary EF-Tu.GTP complex (BC). There would be several paths for amino acid incorporation. The path of highest accuracy would involve TC binding followed by BC binding, followed either by GTP hydrolysis on the TC, or by TC dissociation and GTP hydrolysis on the BC. Codon-anticodon recognition would occur in at least three kinetically and geometrically distinct stages. In a first stage, there would be a very rapid sorting of the TCs with unstrained anticodons contacting a loosely held mRNA. This stage ends with the anchoring of the codon-anticodon complex by a cluster of three nucleotides of 16S RNA. The second stage would be the most discriminative one. It would operate on the 5 ms time scale and terminate with GTP cleavage on the TC. The third stage would provide a last, crude selection involving "naked" aa-tRNA, partially held back by steric hindrance. Streptomycin and most EF-Tu mutants as well as high accuracy ribosomal mutants would produce specific alterations at stage 2, which are mapped on the stage 2 kinetic mechanism. The ram ribosomal ambiguity mutants, and anticodon position 37 modifications could be markers of stages 1 and 3 selection. Dissociation events at stage 2 or stage 3, when they are not immediately followed by reset events create a leaky state favorable to shortcut incorporation events. These events are equivalent to an "error-prone codon-anticodon mismatch repair". From the recent evidence on ribosome structure, it is conjectured that the L7/L12 flexible stalk of the large ribosome subunit acts as a proofreading gate, and that the alternation of its GTPase activation center between "TCase" competence and "BCase" competence is a main factor in the control of accuracy.  相似文献   

3.
Insights into the decoding mechanism from recent ribosome structures   总被引:19,自引:0,他引:19  
During the decoding process, tRNA selection by the ribosome is far more accurate than expected from codon-anticodon pairing. Antibiotics such as streptomycin and paromomycin have long been known to increase the error rate of translation, and many mutations that increase or lower accuracy have been characterized. Recent crystal structures show that the specific recognition of base-pairing geometry leads to a closure of the domains of the small subunit around cognate tRNA. This domain closure is likely to trigger subsequent steps in tRNA selection. Many antibiotics and mutations act by making the domain closure more or less favourable. In conjunction with recent cryoelectron microscopy structures of the ribosome, a comprehensive structural understanding of the decoding process is beginning to emerge.  相似文献   

4.
The modified nucleotide 3′ of the tRNA anticodon is an important structural element that regulates the codon-anticodon interaction in the ribosome by stacking with codon-anticodon bases. The presence and identity (pyrimidine, purine, or modified purine) of this nucleotide significantly affects the energy of stacking in the A and P sites of the ribosome. Modification of nucleotide 37 does not contribute to stacking in the A site of the 70S ribosome, while its effect is substantial in the P site. The enthalpies of tRNA interactions with the A and P sites in the ribosome are similar and considerably lower than the enthalpy of the interactions of two tRNAs with the cognate anticodons in solution, suggesting that the ribosome contributes to the enthalpy-related portion of the free energy of tRNA binding by directly forming additional interactions with tRNA or by indirectly stabilizing the conformation of the codon-anticodon complex. In addition to stacking, tRNA binding in the A and P sites is further stabilized by interactions that involve magnesium ions. The number of ions involved in the formation of the tRNA-ribosome complex depends on the identity of tRNA nucleotide 37.  相似文献   

5.
High spatial and time resolution single-molecule fluorescence resonance energy transfer measurements have been used to probe the structural and kinetic parameters of transfer RNA (tRNA) movements within the aminoacyl (A) and peptidyl (P) sites of the ribosome. Our investigation of tRNA motions, quantified on wild-type, mutant, and L1-depleted ribosome complexes, reveals a dynamic exchange between three metastable tRNA configurations, one of which is a previously unidentified hybrid state in which only deacylated-tRNA adopts its hybrid (P/E) configuration. This new dynamic information suggests a framework in which the formation of intermediate states in the translocation process is achieved through global conformational rearrangements of the ribosome particle.  相似文献   

6.
Peptide release on the ribosome is catalyzed in the large subunit peptidyl transferase center by release factors on recognition of stop codons in the small subunit decoding center. Here we examine the role of the decoding center in this process. Mutation of decoding center nucleotides or removal of 2'OH groups from the codon--deleterious in the related process of tRNA selection--has only mild effects on peptide release. The miscoding antibiotic paromomycin, which binds the decoding center and promotes the critical steps of tRNA selection, instead dramatically inhibits peptide release. Differences in the kinetic mechanism of paromomycin inhibition on stop and sense codons, paired with correlated structural changes monitored by chemical footprinting, suggest that recognition of stop codons by release factors induces specific structural rearrangements in the small subunit decoding center. We propose that, like other steps in translation, the specificity of peptide release is achieved through an induced-fit mechanism.  相似文献   

7.
A modified nucleotide on the 3'-side of the anticodon loop of tRNA is one of the most important structure element regulating codon-anticodone interaction on the ribosome owing to the stacking interaction with the stack of codon-anticodon bases. The presence and identity (pyrimidine, purine or modified purine) of this nucleotide has an essential influence on the energy of the stacking interaction on A- and P-sites of the ribosome. There is a significant influence of the 37-modification by itself on the P-site, whereas there is no such one on the A-site of the ribosome. Comparison of binding enthalpies of tRNA interactions on the P- or A-site of the ribosome with the binding enthalpies of the complex of two tRNAs with the complementary anticodones suggests that the ribosome by itself significantly endows in the thermodynamics of codon-anticodon complex formation. It happens by additional ribosomal interactions with the molecule of tRNA or indirectly by the stabilization of codon-anticodon conformation. In addition to the stacking, tRNA binding in the A and P sites is futher stabilized by the interactions involving some magnesium ions. The number of them involved in those interactions strongly depends on the nucleotide identity in the 37-position of tRNA anticodon loop.  相似文献   

8.
The translation of genetic information into proteins is a fundamental process of life. Stepwise addition of amino acids to the growing polypeptide chain requires the coordinated movement of mRNA and tRNAs through the ribosome, a process known as translocation. Here, we review current understanding of the kinetics and mechanics of translocation, with particular emphasis on the structure of a functional mammalian ribosome stalled during translocation by an mRNA pseudoknot. In the context of a pseudoknot-stalled complex, the translocase EF-2 is seen to compress a hybrid-state tRNA into a strained conformation. We propose that this strain energy helps overcome the kinetic barrier to translocation and drives tRNA into the P-site, with EF-2 biasing this relaxation in one direction. The tRNA can thus be considered a molecular spring and EF-2 a Brownian ratchet in a "spring-and-ratchet" system within the translocation process.  相似文献   

9.
Elongation factor Tu (EF-Tu) from Escherichia coli carrying the mutation G222D is unable to hydrolyze GTP on the ribosome and to sustain polypeptide synthesis at near physiological Mg2+ concentration, although the interactions with guanine nucleotides and aminoacyl-tRNA are not changed significantly. GTPase and polypeptide synthesis activities are restored by increasing the Mg2+ concentration. Here we report a pre-steady-state kinetic study of the binding of the ternary complexes of wild-type and mutant EF-Tu with Phe-tRNA(Phe) and GTP to the A site of poly(U)-programed ribosomes. The kinetic parameters of initial binding to the ribosome and subsequent codon-anticodon interaction are similar for mutant and wild-type EF-Tu, independent of the Mg2+ concentration, suggesting that the initial interaction with the ribosome is not affected by the mutation. Codon recognition following initial binding is also not affected by the mutation. The main effect of the G222D mutation is the inhibition, at low Mg2+ concentration, of codon-induced structural transitions of the tRNA and, in particular, their transmission to EF-Tu that precedes GTP hydrolysis and the subsequent steps of A-site binding. Increasing the Mg2+ concentration to 10 mM restores the complete reaction sequence of A-site binding at close to wild-type rates. The inhibition of the structural transitions is probably due to the interference of the negative charge introduced by the mutation with negative charges either of the 3' terminus of the tRNA, bound in the vicinity of the mutated amino acid in domain 2 of EF-Tu, or of the ribosome. Increasing the Mg2+ concentration appears to overcome the inhibition by screening the negative charges.  相似文献   

10.
Elongation factor P (EF-P) is a conserved ribosome-binding protein that structurally mimics tRNA to enable the synthesis of peptides containing motifs that otherwise would induce translational stalling, including polyproline. In many bacteria, EF-P function requires post-translational modification with (R)-β-lysine by the lysyl-tRNA synthetase paralog PoxA. To investigate how recognition of EF-P by PoxA evolved from tRNA recognition by aminoacyl-tRNA synthetases, we compared the roles of EF-P/PoxA polar contacts with analogous interactions in a closely related tRNA/synthetase complex. PoxA was found to recognize EF-P solely via identity elements in the acceptor loop, the domain of the protein that interacts with the ribosome peptidyl transferase center and mimics the 3''-acceptor stem of tRNA. Although the EF-P acceptor loop residues required for PoxA recognition are highly conserved, their conservation was found to be independent of the phylogenetic distribution of PoxA. This suggests EF-P first evolved tRNA mimicry to optimize interactions with the ribosome, with PoxA-catalyzed aminoacylation evolving later as a secondary mechanism to further improve ribosome binding and translation control.  相似文献   

11.
Previous work showed that E coli threonyl-tRNA synthetase (ThrRS) binds to the leader region of its own mRNA and represses its translation by blocking ribosome binding. The operator consists of four distinct domains, one of them (domain 2) sharing structural analogies with the anticodon arm of the E coli tRNAThr. The regulation specificity can be switched by using tRNA identity rules, suggesting that the operator could be recognized by ThrRS as a tRNA-like structure. In the present paper, we investigated the relative contribution of the four domains to the regulation process by using deletions and point mutations. This was achieved by testing the effects of the mutations on RNA conformation (by probing experiments), on ThrRS recognition (by footprinting experiments and measure of the competition with tRNAThr for aminoacylation), on ribosome binding and ribosome/ThrRS competition (by toeprinting experiments). It turns out that: i) the four domains are structurally and functionally independent; ii) domain 2 is essential for regulation and contains the major structural determinants for ThrRS binding; iii) domain 4 is involved in control and ThrRS recognition, but to a lesser degree than domain 2. However, the previously described analogies with the acceptor-like stem are not functionally significant. How it is recognized by ThrRS reamins to be resolved; iv) domain 1, which contains the ribosome loading site, is not involved in ThrRS recognition. The binding of ThrRS probably masks the ribosome binding site by steric hindrance and not by direct contacts. This is only achieved when ThrRS interacts with both domains 2 and 4; and v) the unpaired domain 3, which connects domains 2 and 4, is not directly involved in ThrRS recognition. It should serve as an articulation to provide an appropriate spacing between domains 2 and 4. Furthermore, it is possibly involved in ribosome binding.  相似文献   

12.
A bovine liver serine tRNA with a variety of unusual features has been sequenced and characterized. This tRNA is aminoacylated with serine, although it has a tryptophan anticodon CmCA. In ribosome binding assays, this tRNA (tRNACmCASer) binds to the termination codon UGA and shows little or no binding in response to a variety of other codons including those for tryptophan and serine. The unusual codon recognition properties of this molecule were confirmed in an in vitro assay where this tRNA suppressed UGA termination. This is the first naturally occurring eucaryotic suppressor tRNA to be so characterized. Other unusual features, possibly related to the ability of this tRNA to read UGA, are the presence of two extra nucleotides, compared to all other tRNAs, between the universal residues U at position 8 and A at position 14 and the presence of an extra unpaired nucleotide within the double-stranded loop IV stem. This tRNA is also the largest eucaryotic tRNA sequenced to date (90 nucleotides). Despite its size, however, it contains only six modified residues. tRNACmCASer shows extremely low homology to other mammalian serine (47–52% homology) or tryptophan (49% homology) tRNAs.  相似文献   

13.
To synthesize a protein, a ribosome moves along a messenger RNA (mRNA), reads it codon by codon, and takes up the corresponding ternary complexes which consist of aminoacylated transfer RNAs (aa-tRNAs), elongation factor Tu (EF-Tu), and GTP. During this process of translation elongation, the ribosome proceeds with a codon-specific rate. Here, we present a general theoretical framework to calculate codon-specific elongation rates and error frequencies based on tRNA concentrations and codon usages. Our theory takes three important aspects of in-vivo translation elongation into account. First, non-cognate, near-cognate and cognate ternary complexes compete for the binding sites on the ribosomes. Second, the corresponding binding rates are determined by the concentrations of free ternary complexes, which must be distinguished from the total tRNA concentrations as measured in vivo. Third, for each tRNA species, the difference between total tRNA and ternary complex concentration depends on the codon usages of the corresponding cognate and near-cognate codons. Furthermore, we apply our theory to two alternative pathways for tRNA release from the ribosomal E site and show how the mechanism of tRNA release influences the concentrations of free ternary complexes and thus the codon-specific elongation rates. Using a recently introduced method to determine kinetic rates of in-vivo translation from in-vitro data, we compute elongation rates for all codons in Escherichia coli. We show that for some tRNA species only a few tRNA molecules are part of ternary complexes and, thus, available for the translating ribosomes. In addition, we find that codon-specific elongation rates strongly depend on the overall codon usage in the cell, which could be altered experimentally by overexpression of individual genes.  相似文献   

14.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

15.
EF-G bound to poly(U)·ribosomes prevents enzymatic or nonenzymatic binding of charged tRNA not only to the A-site but also to the P-site. In turn, charged tRNA bound either to the P- or A-site prevents formation of EF-G·GMPPCP·ribosome complex. Ribosomes carrying newly synthetized peptidyl-tRNA in pretranslocative state are also unable to form stable complexes with EF-G. The functional implications of these observations are discussed and it is suggested that tRNA plays a regulatory role in the interaction of EF-G with ribosomes during the cyclic process of elongation.  相似文献   

16.
Payoe R  Fahlman RP 《Biochemistry》2011,50(15):3075-3083
The bacterial stringent response is a cellular response to amino acid limitations and is characterized by the accumulation of the alarmone polyphosphate guanosine ((p)ppGpp). A key molecular event leading to (p)ppGpp synthesis is the binding of a deacylated tRNA to the vacant A-Site of a ribosome. The resulting ribosomal complex is recognized by and activates RelA, the (p)ppGpp synthetase. Activated RelA catalyzes (p)ppGpp formation until the deacylated tRNA passively dissociates from the ribosomal A-Site. In this report, we have investigated a novel role for the identity of A-Site bound tRNA in RelA-mediated (p)ppGpp synthesis. A comparison in the stimulation of RelA activity was made using ribosome complexes with either a tightly or weakly binding deacylated tRNA occupying the A-Site. In vitro analysis reveals that ribosome complexes formed with tight binding tRNA(Val) stimulate RelA activity at lower concentrations than that required for ribosome complexes formed with the weaker binding tRNA(Phe). The data suggest that the recovery from the stringent response may be dependent on the identity of the amino acid that was initially limiting for the bacteria.  相似文献   

17.
Function of the ribosomal E-site: a mutagenesis study   总被引:2,自引:2,他引:0       下载免费PDF全文
Ribosomes synthesize proteins according to the information encoded in mRNA. During this process, both the incoming amino acid and the nascent peptide are bound to tRNA molecules. Three binding sites for tRNA in the ribosome are known: the A-site for aminoacyl-tRNA, the P-site for peptidyl-tRNA and the E-site for the deacylated tRNA leaving the ribosome. Here, we present a study of Escherichia coli ribosomes with the E-site binding destabilized by mutation C2394G of the 23S rRNA. Expression of the mutant 23S rRNA in vivo caused increased frameshifting and stop codon readthrough. The progression of these ribosomes through the ribosomal elongation cycle in vitro reveals ejection of deacylated tRNA during the translocation step or shortly after. E-site compromised ribosomes can undergo translocation, although in some cases it is less efficient and results in a frameshift. The mutation affects formation of the P/E hybrid site and leads to a loss of stimulation of the multiple turnover GTPase activity of EF-G by deacylated tRNA bound to the ribosome.  相似文献   

18.
Kinetic analyses of tRNA binding to the ribosome and of the translocation reaction showed the following results. 1) The activation energy for the P site binding of AcPhe-tRNA to poly(U)-programmed ribosomes is relatively high (Ea = 72 kJ mol-1; 15 mM Mg2+). If only the P site is occupied with deacylated tRNA(Phe), then the E site can be filled more easily with tRNA(Phe) (no activation energy measurable) than the A site with AcPhe-tRNA (Ea = 47 kJ mol-1; 15 mM Mg2+). 2) A ribosome with blocked P and E sites represents a standard state of the elongation cycle, in contrast to a ribosome with only a filled P site. The two states differ in that AcPhe-tRNA binding to the A site of a ribosome with prefilled P and E sites requires much higher activation energy (87 versus 47 kJ mol-1). The latter reaction simulates the allosteric transition from the post- to the pretranslocational state, whereby the tRNA(Phe) is released from the E site upon occupation of the A site (Rheinberger, H.-J., and Nierhaus, K. H. (1986) J. Biol. Chem. 261, 9133-9139). The reversed transition from the pre- to the posttranslocational state (translocation reaction) requires about the same activation energy (90 kJ mol-1). 3) Both elongation factors EF-Tu and EF-G drastically reduce the respective activation energies. 4) The rate of the A site occupation is slower than the rate of translocation in the presence of the respective elongation factors. The data suggest that the A site occupation rather than, as generally assumed, the translocation reaction is the rate-limiting step of the elongation cycle.  相似文献   

19.
During protein synthesis, interactions between the decoding center of the ribosome and the codon-anticodon complexes maintain translation accuracy. Correct aminoacyl-tRNAs induce the ribosome to shift into a "closed" conformation that both blocks tRNA dissociation and accelerates the process of tRNA acceptance. As part of the ribosomal recognition of cognate tRNAs, the rRNA nucleotides G530 and A1492 form a hydrogen-bonded pair that interacts with the middle position of the codon.anticodon complex and recognizes correct Watson-Crick base pairs. Exchanging these two nucleotides (A530 and G1492) would not disrupt these interactions, suggesting that such a double mutant ribosome might properly recognize tRNAs and support viability. We find, however, that exchange mutants retain little ribosomal activity. We suggest that even though the exchanged nucleotides might function properly during tRNA recruitment, they might disrupt one or more other functions of the nucleotides during other stages of protein synthesis.  相似文献   

20.
Specificity of the ribosomal A site for aminoacyl-tRNAs   总被引:1,自引:1,他引:0       下载免费PDF全文
Although some experiments suggest that the ribosome displays specificity for the identity of the esterified amino acid of its aminoacyl-tRNA substrate, a study measuring dissociation rates of several misacylated tRNAs containing the GAC anticodon from the A site showed little indication for such specificity. In this article, an expanded set of misacylated tRNAs and two 2′-deoxynucleotide-substituted mRNAs are used to demonstrate the presence of a lower threshold in koff values for aa-tRNA binding to the A site. When a tRNA binds sufficiently well to reach this threshold, additional stabilizing effects due to the esterified amino acid or changes in tRNA sequence are not observed. However, specificity for different amino acid side chains and the tRNA body is observed when tRNA binding is sufficiently weaker than this threshold. We propose that uniform aa-tRNA binding to the A site may be a consequence of a conformational change in the ribosome, induced by the presence of the appropriate combination of contributions from the anticodon, amino acid and tRNA body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号