首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel ligand, 1‐(naphthalen‐2‐yl)‐2‐(phenylsulthio)ethanone was synthesized using a new method and its two europium (Eu) (III) complexes were synthesized. The compounds were characterized by elemental analysis, coordination titration analysis, molar conductivity, infrared, thermo gravimetric analyzer‐differential scanning calorimetry (TGA‐DSC), 1H NMR and UV spectra. The composition was suggested as EuL5 · (ClO4)3 · 2H2O and EuL4 · phen(ClO4)3 · 2H2O (L = C10H7COCH2SOC6H5). The fluorescence spectra showed that the Eu(III) displayed strong characteristic metal‐centered fluorescence in the solid state. The ternary rare earth complex showed stronger fluorescence intensity than the binary rare earth complex in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 1.49 times as strong as that of the binary system. The phosphorescence spectra were also discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A simple spectrofluorimetric method is described for the determination of DNA, based on its enhancement of the fluorescence intensity of prulifloxacin (PUFX)–Tb3+. The luminescence intensity of the PUFX–Tb3+ complex increased up to 10‐fold after adding DNA. The excitation and emission wavelengths were 345 and 545 nm, respectively. Under optimum conditions, variations in the fluorescence intensity showed a good linear relationship with the concentration of hsDNA in the range of 3.0 × 10‐9 to 1.0 × 10‐6 g/mL, with a correlation coefficient (R) of 0.997, and the detection limit was 2.1 × 10‐9 g/mL. The method was successfully applied to the determination of DNA in synthetic samples, and recoveries were in the range 97.3–102.0%. The mechanism of fluorescence enhancement of the PUFX–Tb3+ complex by DNA is also discussed. The mechanism may involve formation of a ternary complex mainly by intercalation binding together with weak electrostatic interaction, which will increase the energy transition from ligand to Tb3+, increasing the rigidity of the complex, and decreasing the radiationless energy loss through O–H vibration of the H2O molecule in the PUFX–Tb3+ compl+osed method is not only more robust and friendly to the environment, but also of relatively higher sensitivity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This article reports a novel category of coating structure SiO2@Eu(MABA‐Si) luminescence nanoparticles (NPs) consisting of a unique organic shell, composed of perchlorate europium(III) complex, and an inorganic core, composed of silica. The binary complex Eu(MABA‐Si)3·(ClO4)3·5H2O was synthesized using HOOCC6H4N(CONH(CH2)3Si(OCH2CH3)3)2 (MABA‐Si) and was used as a ligand. Furthermore, the as‐prepared silica NPs were successfully coated with the ‐Si(OCH2CH3)3 group of MABA‐Si to form Si–O–Si chemical bonds by means of the hydrolyzation of MABA‐Si. The binary complexes were characterized by elemental analysis, molar conductivity and coordination titration analysis. The results indicated that the composition of the binary complex was Eu(MABA‐Si)3·(ClO4)3·5H2O. Coating structure SiO2@Eu(MABA‐Si) NPs were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and infrared (IR) spectra. Based on the SEM and TEM measurements, the diameter of core‐SiO2 particles was ~400 and 600 nm, and the thickness of the cladding layer Eu(MABA‐Si) was ~20 nm. In the binary complex Eu(MABA‐Si)3·(ClO4)3·5H2O, the fluorescence spectra illustrated that the energy of the ligand MABA‐Si transferred to the energy level for the excitation state of europium(III) ion. Coating structure SiO2@Eu(MABA‐Si) NPs exhibited intense red luminescence compared with the binary complex. The fluorescence lifetime and fluorescence quantum efficiency of the binary complex and of the coating structure NPs were also calculated. The way in which the size of core‐SiO2 spheres influences the luminescence was also studied. Moreover, the luminescent mechanisms of the complex were studied and explained.  相似文献   

4.
It was found that meloxicam could enhance the chemiluminescence (CL) of the tris(2,2'‐bipyridine) ruthenium(II)–Ce(IV) system in the medium of sulfate acid. Based on this phenomenon a new flow‐injection system with chemiluminescent detection has been proposed for determination of meloxicam. Under optimum conditions, meloxicam had a good linear relationship with the CL intensity in the concentration range of 6.0  10?4 to 1.0 µg/mL and the detection limit was 3.7 × 10?4 µg/mL. The proposed method was applied to detect meloxicam in tablets and a satisfactory recovery was obtained. The possible mechanism for this CL system is also discussed in this paper. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Electrochemiluminescence (ECL) of tris(2,2’‐bipyridyl)ruthenium(II) [Ru(bpy)32+] is an active research area and includes the synthesis of ECL‐active materials, mechanistic studies and broad applications. Extensive research has been focused on this area, due to its scientific and practical importance. In this mini‐review we focus on the bio‐related applications of ECL. After a brief introduction to Ru(bpy)32+ ECL and its mechanisms, its application in constructing an effective bioassay is discussed in detail. Three types of ECL assay are covered: DNA, immunoassay and functional nucleic acid sensors. Finally, future directions for these assays are discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The chemiluminescence (CL) of bis(2,4,6‐trichlorophyenyl) oxalate with hydrogen peroxide in the present of cationic surfactant and gold nanoparticles was studied. The CL emission was obviously enhanced in the presence of surfactant at a suitable concentration, with a synergetic catalysis effect exhibited. Different sizes of gold nanoparticles (15 and 50 nm) showed different effects on CL intensity. Mechanisms of the CL reaction and sensitization effect are discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Six novel 8‐hydroxyquinoline derivatives were synthesized using 2‐methyl‐8‐hydroxyquinoline and para‐substituted phenol as the main starting materials, and were characterized by 1H nuclear magnetic resonance (NMR), mass spectrometry (MS), ultraviolet (UV) light analysis and infra‐red (IR) light analysis. Their complexes with Eu(III) were also prepared and characterized by elemental analysis, molar conductivity, UV light analysis, IR light analysis, and thermogravimetric–differential thermal analysis (TG–DTA). The results showed that the ligand coordinated well with Eu(III) ions and had excellent thermal stability. The structure of the target complex was EuY1–6(NO3)3.2H2O. The luminescence properties of the target complexes were investigated, the results indicated that all target complexes had favorable luminescence properties and that the introduction of an electron‐donating group could enhance the luminescence intensity of the corresponding complexes, but the addition of an electron‐withdrawing group had the opposite effect. Among all the target complexes, the methoxy‐substituted complex (–OCH3) had the highest fluorescence intensity and the nitro‐substituted complex (–NO2) had the weakest fluorescence intensity. The results showed that 8‐hydroxyquinoline derivatives had good energy transfer efficiency for the Eu(III) ion. All the target complexes had a relatively high fluorescence quantum yield. The fluorescence quantum yield of the complex EuY3(NO3)3.2H2O was highest among all target complexes and was up to 0.628. Because of excellent luminescence properties and thermal stabilities of the Eu(III) complexes, they could be used as promising candidate luminescent materials.  相似文献   

8.
Huimin Liu  Heyou Han 《Luminescence》2009,24(5):300-305
Perturbation of the tris(2,2′‐bipyridine)ruthenium(II) [Ru(bpy)32+]‐catalyzed Belousov–Zhabotinsky (BZ) oscillating chemiluminescence (CL) reaction induced by l ‐cysteine was observed in the closed system. It was found that the CL intensity was decreased in the presence of l ‐cysteine. Meanwhile, oscillation period and oscillating induction period were prolonged. The sufficient reproducible induction period was used as parameter for the analytical application of oscillating CL reaction. Under the optimum conditions, the changes in the oscillating CL induction period were linearly proportional to the concentration of l ‐cysteine in the range from 8.0 × 10?7 to 5.0 × 10?5 mol L?1 (r = 0.997) with a detection limit of 4.3 × 10?7 mol L?1. The possible mechanism of l ‐cysteine perturbation on the oscillating CL reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
《Chirality》2017,29(6):273-281
Enantiomeric 1H and 13C NMR signal separation behaviors of various α‐amino acids and DL‐tartarate were investigated by using the samarium(III) and neodymium(III) complexes with (S ,S )‐ethylenediamine‐N ,N' ‐disuccinate as chiral shift reagents. A relatively smaller concentration ratio of the lanthanide(III) complex to substrates was suitable for the neodymium(III) complex compared with the samarium(III) one, striking a balance between relatively greater signal separation and broadening. To clarify the difference in the signal separation behavior, the chemical shifts of β‐protons for fully bound D‐ and L‐alanine (δb(D) and δb(L)) and their adduct formation constants (K s) were obtained for both metal complexes. Preference for D‐alanine was similarly observed for both complexes, while it was revealed that the difference between the δb(D) and δb(L) values is the significant factor to determine the enantiomeric signal separation. The neodymium(III) and samarium(III) complexes can be used complementarily for higher and smaller concentration ranges of substrates, respectively, because the neodymium(III) complex gives the larger difference between the δb(D) and δb(L) values with greater signal broadening compared to the samarium(III) complex.  相似文献   

10.
A novel spectrofluorometric method for the determination of furosemide (FUR) is described. The method is based on enhancement of fluorescence emission of FUR in the presence of zinc (II) complexes of 1,4‐bis(imidazol‐1‐ylmethyl)benzene. Under optimum conditions, the enhanced fluorescence intensity is linearly related to the concentration of FUR. The proposed method has been successfully applied to the determination of FUR in pharmaceutical preparations. The possible mechanism of this reaction is discussed briefly based on data from fluorescence spectroscopy, UV–vis absorption and infrared spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, rapid and sensitive chemiluminescent (CL) method for the assay of venlafaxine (VEN) in pharmaceutical formulations and serum samples by a two‐chip device is proposed. The method is based on the reaction of this drug with a tris(2,2′‐bipyridyl) ruthenium(II)–peroxydisulphate CL system. The optimum chemical conditions for CL emission were investigated. The calibration graph was linear for the concentration range 0.02–8.0 µg/mL. The detection and quantification limits were found to be 0.006 and 0.018 µg/mL, respectively, while the relative standard deviation (RSD) was <2.0%. The present CL procedure was applied to the determination of VEN in pharmaceutical formulations and serum samples; the recovery levels were in the range 96.5–101.2%. The results suggest that the method is unaffected by the presence of common formulation excipients found in these samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Eight novel 1,2,4‐triazolo[3,4‐b]‐1,3,4‐thiadiazol derivatives have been designed and synthesized, and their corresponding Tb3+ complexes were also prepared successfully. The fluorescence properties and fluorescence quantum yields of the target complexes were investigated, the results showed that the ligands were an efficient sensitizer for Tb3+ luminescence, and the target complexes exhibited characteristic fluorescence emissions of Tb3+ ion. The fluorescence intensity of the complex substituted by chlorine was stronger than that of other complexes. The substituents' nature has a great effect upon the electrochemical properties of the target complexes. The results showed that the introduction of the electron‐withdrawing groups tended to decrease the oxidation potential and highest occupied molecular orbital energy levels of the target Tb3+ complexes; however, introduction of the electron‐donating groups can increase the corresponding complexes' oxidation potential and highest occupied molecular orbital energy levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
It was found that the fluorescence of Tb3+–epinephrine (E) complex can be enhanced by both bovine serum albumin (BSA) and sodium dodecylsulfate (SDS), and stabilized by ascorbic acid (AA). It is considered that the fluorescence enhancement of the Tb3+–E–BSA–AA–SDS system originates not only from the hydrophobic microenvironment provided by BSA–SDS, but also from the energy transfer from BSA to Tb3+ in this system. Therefore, a new fluorescence method for the determination of protein concentrations as low as 1.3 × 10?9 g mL?1 BSA is established using Tb3+–epinephrine complex as probe. The method has been applied for the determination of BSA and human serum albumin in actual samples, and the results obtained are satisfactory. Compared with other fluorescence methods, this method is simpler and more sensitive for the determination of protein. The mechanism of the fluorescence enhancement of the system is studied in detail. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
A novel luminescence, enhancement phenomenon in the europium(III)–dopamine–sodium dodecylbenzene sulfonate system was observed when lanthanum(III) was added. Based on this, a sensitive co‐luminescence method was established for the determination of dopamine. The luminescence signal for the europium (III)–lanthanum(III)–dopamine–sodium dodecylbenzene sulfonate system was monitored at λex = 300 nm, λem =618 nm and pH 8.3. Under optimized conditions, the enhanced luminescence signal responded linearly to the concentration of dopamine in the range 1.0 × 10–10–5.0 × 10–7 mol/L with a correlation coefficient of 0.9993 (n = 11). The detection limit (3σ) was 2.7 × 10–11 mol/L and the relative standard deviation for 11 parallel measurements of 3.0 × 10–8 mol/L dopamine was 1.9%. The presented method was successfully applied for the estimation of dopamine in samples of pharmaceutical preparations, human serum and urine. The possible luminescence enhancement mechanism of the system is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The UV, excitation and luminescence spectra of EuA3B to be the extracted species as well as the extraction of Eu(III) with pivaloyltrifluoroacetone, HA, and/or Lewis bases, B (2,2′-bipyridyl, bpy, and bis(salicylidene)trimethylenediamine, H2saltn) into CHCl3 were measured. The results are summarized: the stability constants of EuA3bpy and EuA3H2saltn complexes are 5.85 ± 0.05 and 2.95 ± 0.06 as , respectively. The present results suggest that because of intramolecular hydrogen bonding, the stability and luminescence of the H2saltn complex including the quantum yield are smaller than those of the bpy complex. The weaker luminescence is also concerned with the fact that the less stable complexes easily dissociate in solvents to diminish the essential concentration.  相似文献   

18.
Two complexes of Tb3+, Gd3+/Tb3+ and one heteronuclear crystal Gd3+/Tb3+ with phenoxyacetic acid (HPOA) and 2,4,6‐tris‐(2‐pyridyl)‐s–triazine (TPTZ) have been synthesized. Elemental analysis, rare earth coordination titration, inductively coupled plasma atomic emission spectrometry (ICP‐AES) and thermogravimetric analysis‐differential scanning calorimetry (TG‐DSC) analysis show that the two complexes are Tb2(POA)6(TPTZ)2·6H2O and TbGd(POA)6(TPTZ)2·6H2O, respectively. The crystal structure of TbGd(POA)6(TPTZ)2·2CH3OH was determined using single‐crystal X‐ray diffraction. The monocrystal belongs to the triclinic system with the P‐1 space group. In particular, each metal ion is coordinately bonded to three nitrogen atoms of one TPTZ and seven oxygen atoms of three phenoxyacetic ions. Furthermore, there exist two coordinate forms between C6H5OCH2COO and the metal ions in the crystal. One is a chelating bidentate, the other is chelating and bridge coordinating. Fluorescence determination shows that the two complexes possess strong fluorescence emissions. Furthermore, the fluorescence intensity of the Gd3+/Tb3+ complex is much stronger than that of the undoped complex, which may result from a decrease in the concentration quench of Tb3+ ions, and intramolecular energy transfer from the ligands coordinated with Gd3+ ions to Tb3+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Based on the fluorescence quenching of Terbium (III)‐sodium hexametaphosphate (Tb/SHMP) chelates in the presence chromate (III), a sensitive fluorimetric method was developed for the determination of trace amounts of chromium (III) in aqueous solutions. Under the optimum conditions, the linear calibration graph was obtained (R = 0.996). The linear range and detection limit of Cr (III) were 7.69 × 10?7 to 1.15 × 10?4 mol L?1 and 4.50 × 10?7 mol L?1, respectively. The proposed method had a wider linear range and was proved to be very sensitive, rapid and simple. The method was applied successfully to the determination of chromium (III) in the synthetic samples and real water samples. Moreover, the reaction mechanism was discussed through the fluorescence lifetime and proved to be dynamic quenching behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号