首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass due to faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research.  相似文献   

2.
In this work, a three‐dimensional model of fluid–structure interactions (FSI) in biofilm systems is developed in order to simulate biofilm detachment as a result of mechanical processes. Therein, fluid flow past the biofilm surface results in a mechanical load on the structure which in turn causes internal stresses in the biofilm matrix. When the strength of the matrix is exceeded parts of the structure are detached. The model is used to investigate the influence of several parameters related to the mechanical strength of the biofilm matrix, Young's modulus, Reynolds number, and biofilm structure on biofilm detachment. Variations in biofilm strength and flow conditions significantly influence the simulation outcome. With respect to structural properties the model is widely independent from a change of Young's modulus. A further result of this work indicates that the change of biofilm structure due to growth or other processes will significantly change the stress distribution in the biofilm and thereby the detachment rate. An increase of the mechanical load by increasing fluid flow results in a flat surface of the remaining biofilm structure. It is concluded that the change of structure during biofilm development is the key determinant in terms of the detachment behavior. Biotechnol. Bioeng. 2009;103: 177–186. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Aims: The amoebae of the genus Hartmanella are frequently recovered from hospital water taps, whereas Pseudomonas aeruginosa is often implicated in nosocomial infections. Previous works suggested that free living amoebae can act as vehicles of bacterial transmission. The present work investigates the relationships between a strain of Hartmanella vermiformis and three strains of P. aeruginosa: a reference strain, a strain from a patient and an environmental strain. Methods and Results: In a saline medium, H. vermiformis is not able to favour for the development of P. aeruginosa. In a rich co‐cultivation medium, only the environmental strain has shown a growth. Conclusions: We showed that P. aeruginosa is not a good nutrient source for H. vermiformis. Significance and Impact of the Study: Nevertheless, in particular conditions and with particular strains, the presence of H. vermiformis could represent a possibility of growth for P. aeruginosa.  相似文献   

4.
    
  1. The scientific basis for setting environmental flows is still hampered by our incomplete understanding of flow–ecology relationships and how river ecology varies with flow regime.
  2. We conducted a study of six rivers in Tasmania (Australia), three perennial and three intermittent, measuring a range of abiotic, biotic and ecosystem process attributes over 2 years. Our intentions were to identify: (i) whether they had an ecology characteristic of their flow regime and (ii) whether certain ecological attributes were more responsive to flow regime than others, and therefore represented candidate indicators (for environmental flows or flow alteration) specific to each flow regime.
  3. Only a few abiotic variables showed any relationship with flow regime: banks were higher, pools shallower and sediments finer in perennial rivers, and water temperature was generally lower in perennial rivers. Although rarely measured, we found that productivity and net ecosystem metabolism were strongly related to flow regime, whereas food chain length did not vary between perennial and intermittent rivers. Multivariate, rather than univariate, metrics of biotic assemblages were more effective at distinguishing perennial and intermittent flow regimes, and this was consistent among riparian and instream vegetation, biofilm and macroinvertebrate assemblages. In contrast to expectations from the literature, fish assemblages were not strong indicators of flow regime, largely due to the relatively low diversity and abundance of the Tasmanian fish fauna.
  4. Our findings demonstrate that rivers with different flow regimes can support a distinctive ecology, and conventional metrics of ecological character may not be the most sensitive to flow regime. We provide a set of ecological attributes that can: (i) support extrapolation of flow–ecology relationships across rivers to regional scales, (ii) provide benchmarks for environmental flow and flow restoration objectives, (iii) indicate alterations to natural or existing flow regimes and (iv) be used to monitor and evaluate flow management actions.
  相似文献   

5.
    
Identifying the genetic basis of phenotypic variation and its relationship with the environment is key to understanding how local adaptations evolve. Such patterns are especially interesting among populations distributed across habitat gradients, where genetic structure can be driven by isolation by distance (IBD) and/or isolation by environment (IBE). Here, we used variation in ~1,600 high‐quality SNPs derived from paired‐end sequencing of double‐digest restriction site‐associated DNA (ddRAD‐Seq) to test hypotheses related to IBD and IBE in the Yucatan jay (Cyanocorax yucatanicus), a tropical bird endemic to the Yucatán Peninsula. This peninsula is characterized by a precipitation and vegetation gradient—from dry to evergreen tropical forests—that is associated with morphological variation in this species. We found a moderate level of nucleotide diversity (π = .008) and little evidence for genetic differentiation among vegetation types. Analyses of neutral and putatively adaptive SNPs (identified by complementary genome‐scan approaches) indicate that IBD is the most reliable explanation to account for frequency distribution of the former, while IBE has to be invoked to explain those of the later. These results suggest that selective factors acting along a vegetation gradient can promote local adaptation in the presence of gene flow in a vagile, nonmigratory and geographically restricted species. The putative candidate SNPs identified here are located within or linked to a variety of genes that represent ideal targets for future genomic surveys.  相似文献   

6.
Two different ant–Acacia ecosystems at two different sites were investigated for comparing their lifestyles. One ecosystem is at St. Katherine's Protectorate and the other at Ismailia Province, Egypt. The defense mechanisms that each Acacia tree use against browsers were investigated. Seasonal and daily abundances of ants and other herbivores on two Acacia trees were studied. The study indicated different defense mechanisms used by these two Acacia species: Acacia use both physical and chemical defense mechanisms. The efficiency of both mechanisms in defending Acacia against herbivores and why Acacia trees preferred one mechanism to the other are discussed.  相似文献   

7.
    
Sensitivity to chemical cues associated with predation threat has been well observed in many freshwater zooplankters, yet few studies have highlighted such sensitivity in eury‐ and stenohaline metazoans. We aimed to assess sensitivity to conspecific chemical alarm cues in the estuarine copepod, Paracartia longipatella. Alarm cues associated with predation have been shown to have population level effects on certain zooplanktonic species. As such, we assessed the occurrence of such effects on population dynamics of P. longipatella over a 12 day period. Using experimental in situ mesocosms, we compared P. longipatella adult, copepodite and nauplii numbers between three treatments; one inoculated with conspecific alarm cues, one containing direct predation pressure (zooplanktivorous fish), and a control treatment containing no predation threat. Trends in population abundances were similar between the direct predation and alarm cue treatments for the six days of the experiment, decreasing in abundance. During the latter half of the study, however, P. longipatella abundances in the alarm cue treatment increased, while those in the presence of direct predation continued to decrease. In the treatment absent of any predation threat, P. longipatella abundances increased consistently over time for the duration of the study. We suggest that P. longipatella are indeed sensitive to conspecific alarm cues associated with predation threat. Furthermore, we propose that prolonged exposure to conspecific alarm cues in the absence of any real threat results in a reduction in sensitive to these cues.  相似文献   

8.
    
  1. Quantifying ecological responses to river flow regimes is a key scientific approach underpinning many environmental flow (e‐flow) strategies. Incorporating habitat‐scale influences (e.g. substrate composition and organic matter cover) within e‐flow frameworks has the potential to provide a broader understanding of the causal mechanisms shaping instream communities, which may be used to guide river management strategies.
  2. In this study, we examined invertebrate communities inhabiting three distinct habitat groups (HGs—defined by coarse substrates, fine sediments, and the fine‐leaved macrophyte Ranunculus sp.) across four rivers (each comprising two study sites) within a single catchment. We tested the structural and functional responses of communities inhabiting different HGs to three sets of flow‐related characteristics: (1) antecedent hydrological (discharge—m3/s) variability; (2) antecedent anthropogenic flow alterations (percentage of discharge added to or removed from the river by human activity); and (3) proximal hydraulic conditions (characterised by the Froude number). The former two were derived from groundwater model daily time series in the year prior to the collection of each invertebrate sample, while the latter was collected at the point of sampling.
  3. While significant effects of hydrological and anthropogenic flow alteration indices were detected, Froude number exerted the greatest statistical influence on invertebrate communities. This highlights that habitat‐scale hydraulic conditions to which biota are exposed at the time of sampling are a key influence on the structure and function of invertebrate communities.
  4. Mixed‐effect models testing invertebrate community responses to flow‐related characteristics, most notably Froude number, improved when a HG interaction term was incorporated. This highlights that different mineralogical and organic habitat patches mediate ecological responses to hydraulic conditions. This can be attributed to HGs supporting distinct taxonomic and functional compositions and/or providing unique ecological functions (e.g. flow refuges), which alter how instream communities respond to hydraulic conditions.
  5. While the individual importance of both flow and small‐scale habitat effects on instream biota has been widely reported, this study provides rare evidence on how their interactive effects have a significant influence on riverine ecosystems. These findings suggest that river management strategies and e‐flow frameworks should not only aim to create a mosaic of riverine habitats that support ecosystem functioning, but also consider the management of local hydraulic conditions within habitat patches to support specific taxonomic and functional compositions.
  相似文献   

9.
    
Pioneer work by Prof. Cossart among others, studying the interactions between pathogenic bacteria and host cells (this discipline was termed Cellular Microbiology), was fundamental to determine the bacterial infection processes and to improve our knowledge of different cellular mechanisms. The study of bacteria–host interactions also involves in vivo host immune responses, which can be manipulated by bacteria, being these last potent tools for different immunotherapies. During the last years, tumour immunotherapies, mainly the use of antibodies that target immune checkpoints [checkpoint inhibitors (CPI)], have been a revolution in oncology, allowing the treatment of tumours otherwise with very bad prognosis. In the same direction, bacteria inoculations have been used from long to treat some cancers; for example, non‐muscle‐invasive bladder cancer can be successfully treated with the bacterium Bacillus Calmette Guerin (BCG). More recently, it has been shown that microbiota could determine the success of CPI immunotherapies and intense research is being performed in order to use bacteria as immunotherapy tools due to their ability to activate the immune system. In this context, to expand the knowledge of the bacteria–immune system interactions will be fundamental to improve tumour immunotherapies.  相似文献   

10.
    
Hydrodynamic conditions have a significant impact on the biofilm lifecycle. Not well understood is the fact that biofilms, in return, also affect the flow pattern. A decade ago, it was already shown experimentally that under fast flows, biofilm streamers form and oscillate with large amplitudes. This work is a first attempt to answer the questions on the mechanisms behind the oscillatory movement of the streamers, and whether this movement together with the special streamlined form of the streamers, have both a physical and biological benefit for biofilms. In this study, a state of the art two‐dimensional fluid–structure interaction model of biofilm streamers is developed, which implements a transient coupling between the fluid and biofilm mechanics. Hereby, it is clearly shown that formation of a Kármán vortex street behind the streamer body is the main source of the periodic oscillation of the streamers. Additionally it is shown that the formation of streamers reduces the fluid forces which biofilm surface experiences. Biotechnol. Bioeng. 2010; 105: 600–610. © 2009 Wiley Periodicals, Inc.  相似文献   

11.
    
Trait‐based approaches may improve understanding in ecology by linking environmental variation to fitness‐related characteristics of species. Most trait–environment studies focus on assemblage‐level relationships; yet intraspecific trait variation is important for community, ecosystem, and evolutionary processes, and has substantial implications for these approaches. Assessing population‐level trait–environment relationships could test the generality of trait models whilst assessing intraspecific variation. We evaluated the generality of the trilateral life history model (TLHM opportunistic, periodic, and equilibrium endpoints) for fishes – a well‐studied trait–environment model at the assemblage level – to populations of three stream fishes in the Midwestern United States in relation to flow regime. The TLHM adequately described major trade‐offs in traits amongst populations in all species. Some TLHM flow‐based predictions were confirmed, with periodic traits (high fecundity) favoured at sites with greater flow seasonality and lower flow variability in two species, and equilibrium traits (large eggs) in more stable flow conditions in two species. Size at maturity was also inversely related to variability in one species. However, relationships contradicting the TLHM were also found. Coupled with the explanatory power of the TLHM for populations, supporting relationships suggest that synthesizing habitat template models with demographic life history theory could be valuable. Trait–environment models that are well‐supported at multiple levels of biological organization could improve understanding of the impacts of environmental change on populations and communities and the valuable ecosystem services that they support. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
    
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ? Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP‐1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ? Src, and inhibition of EGFR controls pre‐established toxoplasmosis.  相似文献   

13.
14.
    
Summary We propose a semiparametric case‐only estimator of multiplicative gene–environment or gene–gene interactions, under the assumption of conditional independence of the two factors given a vector of potential confounding variables. Our estimator yields valid inferences on the interaction function if either but not necessarily both of two unknown baseline functions of the confounders is correctly modeled. Furthermore, when both models are correct, our estimator has the smallest possible asymptotic variance for estimating the interaction parameter in a semiparametric model that assumes that at least one but not necessarily both baseline models are correct.  相似文献   

15.
    
Through niche construction, organisms modify their environments in ways that can alter how selection acts on themselves and their offspring. However, the role of niche construction in shaping developmental and evolutionary trajectories, and its importance for population divergences and local adaptation, remains largely unclear. In this study, we manipulated both maternal and larval niche construction and measured the effects on fitness‐relevant traits in two rapidly diverging populations of the bull‐headed dung beetle, Onthophagus taurus. We find that both types of niche construction enhance adult size, peak larval mass, and pupal mass, which when compromised lead to a synergistic decrease in survival. Furthermore, for one measure, duration of larval development, we find that the two populations have diverged in their reliance on niche construction: larval niche construction appears to buffer against compromised maternal niche construction only in beetles from Western Australia, but not in beetles from the Eastern United States. We discuss our results in the context of rapid adaptation to novel conditions and the role of niche construction therein.  相似文献   

16.
17.
    
Aseptic cell sorting is challenging, especially when a flow‐cytometric cell sorter is not operated in a sterile environment. The sheath fluid system of a cell sorter may be contaminated with germs such as bacteria, yeasts, viruses, or fungi. Thus, a regular chemical cleaning procedure is required to prepare a sorter for aseptic cell sorting by flushing the fluidic system. However, this procedure is time consuming, and most importantly, the researcher can never be sure that the cleaning process was successful. Here we present a method in which the sheath fluid of a cell sorter was decontaminated by irradiation with UV‐C light using a flow‐through principle. Using this principle, we were able to achieve a 5 log reduction of bacteria in the sheath fluid.  相似文献   

18.
    
  1. Empirical relationships between stream flow and ecological responses (flow–ecology relationships) are essential for establishing environmental flows and evaluating tradeoffs between instream values and out‐of‐stream uses. Establishing the shape of flow–ecology relationships (i.e. slope, linearity versus nonlinearity) is particularly important to avoid crossing ecological thresholds in water management.
  2. This review focuses on ecological responses to discharge at low summer flows when out‐of‐stream water demand is often highest, and identifying ecological contexts where nonlinearities are most likely. Most physical attributes (temperature, dissolved oxygen, available habitat) and ecological responses (energy flow, fish survival, recruitment, community structure) show at least some evidence of nonlinear relationships with flow, although assumptions of linearity may be reasonable across limited discharge ranges which may include low flows.
  3. Nonlinearities are most likely in systems that are near existing thresholds (e.g. cold‐water transitional fish communities that are close to upper thermal tolerances). The probability of nonlinearities is likely to increase under future landuse and climate change scenarios, particularly in combination with other stressors, such as eutrophication, which may greatly accelerate temperature‐related decline in dissolved oxygen under climate warming.
  4. Managers need to anticipate changes in flow–ecology relationships and develop management systems that are robust to change. Field programmes to establish the slope and linearity of local flow–ecology relationships are essential for regional management, but developing generalisable flow–ecology relationships that are transferrable to regions with limited resources also needs to be a priority.
  5. Generalised relationships can be generated through meta‐analysis of empirical flow–ecology relationships, and may prove especially useful if they can capture how environmental and ecological context (channel size and morphology, landuse, flow regime, antecedent conditions, habitat or taxonomic guild) affect flow–ecology relationships. For instance, linking empirical data from flow–ecology relationships to available habitat predicted by physical habitat simulation models (e.g. PHABSIM) may provide a better mechanistic basis for modelling ecological responses, while providing much needed validation for habitat simulation approaches. This would also help bridge the gap between emerging holistic environmental flow modelling approaches and more traditional habitat simulation methods.
  相似文献   

19.
The effects of non-uniform hydrodynamic conditions resulting from flow cell geometry (square and rectangular cross-section) on Pseudomonas aeruginosa 01 (PAO1) biofilm formation, location, and structure were investigated for nominally similar flow conditions using a combination of confocal scanning laser microscope (CSLM) and computational fluid dynamics (CFD). The thickness and surface coverage of PAO1 biofilms were observed to vary depending on the location in the flow cell and thus also the local wall shear stress. The biofilm structure in a 5:1 (width to height) aspect ratio rectangular flow cell was observed to consist mainly of a layer of bacterial cells with thicker biofilm formation observed in the flow cell corners. For square cross-section (1:1 aspect ratio) flow cells, generally thicker and more uniform surface coverage biofilms were observed. Mushroom shaped structures with hollow centers and wall breaks, indicative of ‘seeding’ dispersal structures, were found exclusively in the square cross-section tubes. Exposure of PAO1 biofilms grown in the flow cells to gentamicin revealed a difference in susceptibility. Biofilms grown in the rectangular flow cell overall exhibited a greater susceptibility to gentamicin compared to those grown in square flow cells. However, even within a given flow cell, differences in susceptibility were observed depending on location. This study demonstrates that the spanwise shear stress distribution within the flow cells has an important impact on the location of colonization and structure of the resultant biofilm. These differences in biofilm structure have a significant impact on the susceptibility of the biofilms grown within flow channels. The impact of flow modification due to flow cell geometry should be considered when designing flow cells for laboratory investigation of bacterial biofilms.  相似文献   

20.
Selection experiments with Drosophila have revealed constraints on the simultaneous evolution of life history traits. However, the responses to selection reported by different research groups have not been consistent. Two possible reasons for these inconsistencies are (i) that different groups used different environments for their experiments and (ii) that the selection environments were not identical to the assay environments in which the life history traits were measured. We tested for the effect of the assay environment in life history experiments by measuring a set of Drosophila selection lines in laboratories working on life history evolution with Drosophila in Basel, Groningen, Irvine and London. The lines measured came from selection experiments from each of these laboratories. In each assay environment, we measured fecundity, longevity, development time and body size. The results show that fecundity measurements were particularly sensitive to the assay environment. Differences between assay and selection environment in the same laboratory or differences between assay environments between laboratories could have contributed to the differences in the published results. The other traits measured were less sensitive to the assay environment. However, for all traits there were cases where the measurements in one laboratory suggested that selection had an effect on the trait, whereas in other laboratories no such conclusion would have been drawn. Moreover, we provide good evidence for local adaptation in early fecundity for lines from two laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号