首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of Eu2+ activated SrCaP2O7 pyrophosphate phosphors were synthesized by the modified solid‐state reaction method. The X‐ray diffraction (XRD) and photoluminescence (PL) properties of these phosphors were investigated at room temperature. The excitation spectra indicate that these phosphors can be effectively excited by Hg‐free excitation. The emission spectra exhibit strong blue performance, which is due to the 4f65d1→4f7 transition of Eu2+. The Fourier transform infrared spectrum at room temperature was investigated and surface morphology has been studied by scanning electron microscope. The prepared phosphor exhibited intense blue emission at the 427 nm owing to Eu2+ ion by Hg‐free excitation at 330 nm, that is, solid‐state lighting excitation. Hence, the availability of such a phosphor will significantly help in the growth of blue‐emitting solid‐state lighting applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A high intensity 464 nm excitable ZnWO4:Eu3+ red‐emitting phosphor for warm white lighting applications was prepared using a solid‐state reaction method by varying the dopant Eu3+ concentration. Crystalline purity and phase identification was confirmed and revealed using powder X‐ray diffraction and Rietveld refinement analysis. The surface morphology of Zn1‐xEuxWO4 (x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05) was examined using scanning electron microscopy (SEM) techniques. From SEM analysis, the ZnWO4:Eu3+ phosphor prepared at 1–3% molar Eu3+ concentrations exhibited a small pebble‐like morphology with a smooth surface. On increasing the molar concentration of Eu3+ to >3%, the pebble stone morphology disappeared and a large, smooth irregular polygon‐shaped granular‐like morphology was obtained. Of the higher mol% Eu3+, the 4% Eu3+‐doped ZnWO4 showed the best photoluminescence properties with high intensity and sharp excitation at 395 and 464 nm, followed by red emission centred at 615 nm with excellent CIE coordinates (x = 0.58 and y = 0.41) in the core red region. Elemental composition and chemical state analysis were carried out for the 4% Eu3+‐doped ZnWO4 phosphor using X‐ray photoelectron spectroscopy and energy dispersive X‐ray spectroscopy studies. Based on all the above analyses, the Eu3+‐doped ZnWO4 phosphor was found to be a very efficient red‐emitting phosphor under near‐UV light as well as under visible light excitation and could be used for white LED and field emissive displays applications.  相似文献   

3.
Rare‐earth ions play an important role in eco‐friendly solid‐state lighting for the lighting industry. In the present study we were interested in Eu3+ ion‐doped inorganic phosphors for near ultraviolet (UV) excited light‐emitting diode (LED) applications. Eu3+ ion‐activated SrYAl3O7 phosphors were prepared using a solution combustion route at 550°C. Photoluminescence characterization of SrYAl3O7:Eu3+ phosphors showed a 612 nm emission peak in the red region of the spectrum due to the 5D07F2 transition of Eu3+ ions under excitation at 395 nm in the near‐UV region and at the 466 nm blue excitation wavelength. These red and blue emissions are supported for white light generation for LED lighting. Structure, bonding between each element of the sample and morphology of the sample were analysed using X‐ray diffraction (XRD) and scanning electron microscopy (SEM), which showed that the samples were crystallized in a well known structure. The phosphor was irradiated with a 60Co‐γ (gamma) source at a dose rate of 7.2 kGy/h. Thermoluminescence (TL) studies of these Eu3+‐doped SrYAl3O7 phosphors were performed using a Nucleonix TL 1009I TL reader. Trapping parameters of this phosphor such as activation energy (E), order of kinetics (b) and frequency factor (s) were calculated using Chen's peak shape method, the initial rise method and Ilich's method.  相似文献   

4.
A blue CaMgSi2O6:Eu2+ phosphor was prepared by the solid‐state reaction method and the phosphor characterized in terms of crystal structure, particle size, photoluminescence (PL), thermoluminescence (TL) and mechanoluminescence (ML) properties using X‐ray diffraction (XRD), transmission electron microscopy (TEM), PL spectroscopy, TLD reader and ML impact technique. The XRD result shows that phosphor is formed in a single phase and has a monoclinic structure with the space group C2/c. Furthermore, the PL excitation spectra of Eu2+‐doped CaMgSi2O6 phosphor showed a strong band peak at 356 nm and the PL emission spectrum has a peak at 450 nm. The depths and frequency factors of trap centers were calculated using the TL glow curve by deconvolution method in which the trap depths were found to be 0.48 and 0.61 eV. The formation of CaMgSi2O6:Eu2+ phosphor was confirmed by Fourier transform infrared spectroscopy. The ML intensity increased linearly with the impact velocity of the piston used to deform the phosphor. It was shown that the local piezoelectricity‐induced electron bombardment model is responsible for the ML emission. Finally, the optical properties of CaMgSi2O6:Eu2+ phosphors are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A new borate phosphor CaB3O5(OH):Eu3+ with different morphologies was synthesized using a hydrothermal method and its luminescence properties were studied. The effects of surfactants on the crystal structures, morphologies and luminescence properties of the samples were studied. The results showed that the surfactants play an important role in controlling the morphology and improving the luminescence properties of phosphors. The luminescence intensity and R/O(I615/I592) value were enhanced for the prepared sample by adding PEG4000. The prepared sample exhibited a higher R/O than some anhydrous calcium borate phosphors, indicating that this product could serve as a new potential red phosphor.  相似文献   

6.
Results on optically stimulated luminescence (OSL) in LiCaAlF6:Eu2+ are reported. Continuous wave OSL signal as recorded using blue (470 nm) stimulation was found to be ~31% that of standard phosphor lithium magnesium phosphate. The rate of OSL depletion for standard phosphor lithium magnesium phosphate is only three times less as compared with that of LiCaAlF6:Eu2+. Strong photoluminescence (PL) in the near ultraviolet region is observed for LiCaAlF6:Eu2+ with the characteristic Eu2+ emission at 369 nm for 254 nm excitation. The thermoluminescence (TL) glow peak for LiCaAlF6:Eu2+ was observed at around 180°C. The glow peak was about six times more intense compared with the dosimetric peak of the well known thermoluminescence dosimetric (TLD) phosphor LiF‐TLD 100. Thus this phosphor deserves much more attention than it has received until now and may be useful as a dosimetric material in radiation dosimetry. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Pyrochlore phosphors have shown their worth in modern day lighting in the last few years. Colour tunability of the phosphor is one of the modern techniques used to obtain white light-emitting diodes (WLEDs). In the proposed work, Y2Zr2O7:Sm3+,Eu3+ phosphors were investigated for WLED applications as well as display devices. A convectional solid-state diffusion method was used to synthesize the proposed phosphors. X-ray diffraction of the proposed phosphors was performed and compared with the standard Inorganic Crystal Structure Database. The crystal structure of the sample was cubic in nature, obtained from Rietveld refinement. Vibrational and morphological studies on the samples were carried out using Fourier transform infrared spectroscopy and scanning electron microscopy analysis. The photoluminescence study of the colour tunable phosphor showed the characteristic peak of Sm3+ together with the two sharp peaks of Eu3+ ions. Greenish yellow to red colour tunability was observed in the proposed phosphor with enhancement of Eu3+ ions. All these results showed the worth of this sample for WLEDs applications as well as in display devices.  相似文献   

8.
Eu(2+), Dy(3+) and Tb(3+) co-doped strontium aluminate phosphor with high brightness and long afterglow was synthesized by a combustion method, using urea as a reducer. The properties of SrAl(2)O(4):Eu(2+),Dy(3+),Tb(3+) phosphor with a series of initiating combustion temperatures, urea concentrations and boric acid molar fractions were investigated. The sample at initiating combustion temperature of 600 degrees C exhibited an intense emission peak at 513 nm, in which the phosphor existed as a single-phase monoclinic structure. The experimental results showed that the optimum ratio of urea is 2.0 times higher than theoretical quantities and that the suitable molar fraction of H(3)BO(3) is 0.08. The average particle size of the phosphor was 50-80 nm and its luminescence properties were studied systematically. Compared with SrAl(2)O(4):Eu(2+),Dy(3+) phosphor, the initial luminescence brightness improved from 2.50 candela (cd)/m(2) to 3.55 cd/m(2) and the long afterglow time was prolonged from 1290 s to 2743 s.  相似文献   

9.
The present investigation deals with the effect of calcination temperature on the structural and thermoluminescent (TL) properties of Zn2SiO4 materials. For this study, Zn2SiO4 was prepared via a simple hydrothermal route and calcinated at temperatures from 700°C to 1100°C in an air atmosphere. TL data of all Zn2SiO4 samples showed two peaks at around 240°C and 330°C due to the formation of the luminescence centre during X-ray irradiation. More interestingly, the Zn2SiO4 sample calcinated at 900°C exhibited a shift in the TL peak (282°C and 354°C) with an optimal TL intensity attributed to its good crystallinity with a well-defined hexagonal plate-like morphology. X-ray-irradiated Zn2SiO4 samples calcinated at 900°C exhibited a high-temperature TL glow curve peak, suggesting that the present material could be used for high-temperature dosimetry applications.  相似文献   

10.
We present a new phosphor material, BaAlBO3F2 doped with Eu2+ ions, having emission in the UVA region. The phosphor material is prepared by a simple wet chemical method. Phase confirmation was carried out using the Rietveld refinement program which shows that BaAlBO3F2:Eu2+ has an hexagonal crystal system. Using a Fourier transform infrared spectroscopy graph, we studied the bond stretching present in the phosphor material. Photoluminescence (PL) characterization, carried out using a RF spectrofluorophotometer, shows two types of PL excitation and emission. Before reduction, emission is in the blue region at 431 nm; after reduction, excitation is at 258 nm and emission is at 361 nm, which is in the UVA region. Some thermoluminescence (TL) studies were carried out in this material for the first time, for example, determination of the trapping parameters, linearity, fading, glow curve convolution and deconvolution (GCCD) function for curve fitting and the Tm–Tstop method for confirmation of the trapped centers in the TL glow peak. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Di‐barium magnesium silicate phosphor doped with Eu2+ and Dy3+ was prepared using a solid‐state reaction technique under a reducing atmosphere. The sample underwent impulsive deformation by impact from a piston for mechanoluminescence (ML) investigations. The temporal ML characteristics of the phosphor were observed, which expressed a single sharp peak with a long decaying period. To investigate the luminescence centre responsible for the ML peak, the ML spectrum of the phosphor was also observed. The recorded ML spectrum was similar in shape and peak wavelength to the photoluminescence (PL) spectrum, which verifies the existence of a single emission centre due to the transition of Eu2+ ions, i.e. transitions from any of the sublevels of the 4f65d1 configuration to the 8S7/2 level of the 4f7 configuration. Decay rates for different impact velocities were also calculated using curve‐fitting techniques. The time of the ML peak and the rate of decay did not change significantly with respect to increasing impact velocity of the load and peak ML intensity varied linearly. The mechanism of the ML emission was also discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
The new borate phosphor CaB2O4:Eu3+ was synthesized by solid‐state method and their photoluminescence properties were investigated. The results show that the pure phase of CaB2O4 could be available at 900°C, CaB2O4:Eu3+ phosphor could be effectively excited by the near ultraviolet light (NUV) (392 nm), and the luminescent intensity of CaB2O4:Eu3+ phosphor reached to the highest when the doped‐Eu3+ content was 4 mol%. The emission spectra of CaB2O4:Eu3+ phosphor could exhibit red emission at 612 nm and orange emission at 588 nm, which are ascribed to the 5D07F2 and 5D07F1 transitions of Eu3+ ions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
A series of Mg2Y2Al2Si2O12:Dy3+,Eu3+ was prepared using a solid-state method, and the phosphor emitted white light by tuning the ratio of Dy3+/Eu3+. The effects of La3+/Lu3+ on the structure and luminescence properties of Mg2Y2Al2Si2O12:Dy3+,Eu3+ were explored. Under the influence of bond length and twist, the luminescence intensity of the materials increased first and then decreased under excitation with ultraviolet light. The lattice distortion of the trivalent cation La3+-substituted Mg2Y2Al2Si2O12:Dy3+ and Eu3+ phosphors was reduced, the symmetry of polyhedron occupied by the luminescence centre improved, and the thermal stability of the luminescence centre improved to a certain extent. White light emitting diodes (LEDs) were fabricated by combining a 370 nm LED chip and the Mg2Y2Al2Si2O12:Dy3+,Eu3+,La3+ (Mg2Y2Al2Si2O12:Dy3+,Eu3+,Lu3+) phosphor. The results showed that Mg2Y2Al2Si2O12:Dy3+,Eu3+,La3+/Lu3+ may have potential application in the area of white LEDs.  相似文献   

14.
An intense green photostimulated luminescence in BaAl2O4:Eu2+ phosphor was prepared. The thermoluminescence results indicate that there are at least three types of traps (T1, T2, T3) with different trap depths in BaAl2O4:Eu2+ phosphor according to the bands located at 327, 361 and 555 K, respectively, which are closely associated with the phosphor's long persistent luminescence and photostimulated luminescence properties. In addition, as a novel optical read‐out form, a photostimulated persistent luminescence signal can be repeatedly obtained in BaAl2O4:Eu2+ phosphor. This shows that re‐trapping of the electron released from a deep trap plays an important role in photostimulated persistent luminescence. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, the optical and structural properties of ultrasonically prepared CaF2:Eu3+ nanoparticles have been reported. Ultrasonically prepared CaF2:Eu3+ phosphor shows orange, red emission bands at 591 nm and 612 nm, respectively, when it is excited by 394 light‐emitting diode (LED) excitation wavelengths. Further phosphor materials are well characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) techniques to confirm the phase purity, metal oxygen (MO) bonding and crystallites size of the materials. Here synthesized materials show a tube‐like structure under 100 nm resolution and 0.1 mol% is the best doping value of the europium ion (Eu3+) in calcium fluoride (CaF2) that shows highest intensity when prepared with an ultrasound assisted method.  相似文献   

16.
Direct white light emitting phosphors play a significant role in the display industry due to their ability to improve the quality, efficiency, and versatility of lighting sources used in most of the displays. The currently investigated phosphor SrZr2CaLa2O8:Eu3+ was prepared by a conventional solid-state reaction method. It has been observed that the stoichiometric ratio of all precursors plays an important role in determining the characteristics of the final phosphor. From X-ray diffraction (XRD) analysis, the phosphor was observed to have a hexagonal phase and a crystal size of ~28 nm. Scanning electron microscopy (SEM) observations revealed a cluster of rod-like structures with an average diameter of ~0.2 μm. The excitation peak maximum observed at 280 nm is due to charge transfer between Eu3+-O2− ions. The energy transitions 7F05L6 and 7F05D2 are responsible for the appearance of other excitation peaks at ultraviolet (UV) (395 nm), blue (~467 nm), green (~540 nm), orange (~590 nm), and red (~627 nm) attributed to 5D07FJ (J = 0–4) transitions of europium ion (Eu3+). The Commercial International de I'Eclairage (CIE) chromaticity coordinates were estimated to be (0.37, 0.0.33) and (0.67, 0.33) for the emissions corresponding to 395 and 590 nm, respectively. The characteristic emissions of Eu3+ ions allow this novel phosphor to be used to generate direct white light in light-emitting diodes (LEDs), which is otherwise difficult to achieve in single-component systems.  相似文献   

17.
In this research, a new SrMgAl2SiO7:Eu2+ phosphor was synthesized via the sol–gel method. The phase‐forming processes were studied by thermogravimetric–differential thermal analysis and X‐ray diffraction technique. Scanning electron microscopy showed that there is uniform morphology and microstructure owing to the sol–gel route. Spectrophotometry and colorimetry analyses illustrated that, under short ultraviolet excitation, the main emission peak occurred at 421 nm and also a relatively pure blue color was observed that was ascribed to the 4f65d1(2D) 4f7(8S7/2) transition of Eu2+ with color coordination of x = 0.187, y = 0.077. Finally, it was found that the color and phase purity of the synthesized powder increased as calcinations time increased. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Modified synthesis and luminescence of Y2BaZnO5 phosphors activated with the rare earths (RE) Eu3+, Tb3+, Pr3+ and Sm3+ are reported. RE2BaZnO5 phosphors have attracted attention because of their interesting magnetic and optical properties; and are usually prepared using a two‐step solid‐state reaction. In the first step, carbonates or similar precursors are thoroughly mixed and heated at 900°C to decompose them to oxides. To eliminate the unwanted phases like BaRE2O4, the resulting powders are reheated at 1100°C for a long time. We prepared Y2BaZnO5 phosphors activated with various activators by replacing the first step with combustion synthesis. The photoluminescence results are presented. The photoluminescence results for Eu3+, Tb3+ and Pr3+ are in good agreement with the literature. However, photoluminescence emission from Sm3+ has not been documented previously. The excitation spectrum of Eu3+ is dominated by a charge transfer band around 261 nm, and an additional band around 238 nm is always present, irrespective of the type of activator. The presence of this band for all these different types of activators was interpreted as host absorption.  相似文献   

20.
A novel blue‐emitting phosphor, Eu2+‐doping Al4B2O9, was prepared via a modified solid‐state reaction. Al4B2O9:Eu2+ nanoparticles with diameters varying in a range from 20 to 50 nm were obtained using urea as an auxiliary reagent at the optimum temperature of 850°C. The crystallization and particle sizes of Al4B2O9:Eu2+ were investigated using powder X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Photoluminescence (PL) results showed that Al4B2O9:Eu2+ phosphor could be efficiently excited by the ultraviolet region from 240 to 410 nm, exhibiting bright blue emission. Further investigation on concentration‐dependent emission spectra indicated that the Al3.997B2O9:Eu2+0.003 phosphor exhibited the strongest luminescent, and the relative PL intensity decreased with increasing Eu2+ concentration due to concentration quenching. In addition, the concentration quenching for the one‐Eu‐site emission centers was caused by the electric multipole–multipole interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号