首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Nuclear Receptor Signaling Atlas (NURSA) was developed by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute on Aging (NIA), and the National Cancer Institute (NCI) of the National Institutes of Health (NIH); the aim of NURSA is to utilize classical approaches to validate existing hypotheses and exploit new and emerging technologies to formulate and test new hypotheses that might elucidate the program of nuclear receptor (NR) structure, function, and role in disease. The means for carrying out this ambitious program required development of interactions among investigators and the combined application of new high-throughput technologies and existing approaches to allow for both mechanistic studies and accrual of large datasets in a discovery-based research effort, all leading to advances with implications for the missions of the NIDDK, NIA, and NCI. A team-based multidisciplinary approach has allowed for both objectives to proceed simultaneously, tied together via a central bioinformatics resource and one web-accessible venue (www.nursa.org). The ultimate goals for the NURSA consortium are to: 1) establish the mechanistic principles of NR function, 2) characterize NR-coregulator complex formation and regulation, 3) map protein-protein interactions for coregulators, 4) identify candidate downstream target genes of NR action, 5) identify target tissue expression of NRs, 6) understand the regulation of NR expression and, 7) integrate existing and emerging information through NURSA bioinformatics tools.  相似文献   

3.
We present a prior-based profile method for the prediction of protein-protein interaction partners that is here applied to the nuclear receptor superfamily. In this method, the diagnostic features are locally encoded in the physicochemical properties of residues in the interaction surface that are conserved in all proteins belonging to the defining set. The procedure models the positional variation based on that observed in the defining set and a prior-based substitution matrix derived from over 20,000 highly conserved positions in a set of 147 functional protein families. The method clusters sets of nuclear receptors known to interact with retinoid X receptor or corepressor proteins with predictive sets of receptors in C. elegans and higher metazoans. The method effectively reduces the search space of all possible interactions and yields experimentally testable predictions. Applications of this novel approach extend to interaction prediction problems in general, particularly to those that are not amenable to analysis by the rigid-body approximation.  相似文献   

4.
5.
SM Sahraeian  BJ Yoon 《PloS one》2012,7(8):e41474
In this work, we introduce a novel network synthesis model that can generate families of evolutionarily related synthetic protein-protein interaction (PPI) networks. Given an ancestral network, the proposed model generates the network family according to a hypothetical phylogenetic tree, where the descendant networks are obtained through duplication and divergence of their ancestors, followed by network growth using network evolution models. We demonstrate that this network synthesis model can effectively create synthetic networks whose internal and cross-network properties closely resemble those of real PPI networks. The proposed model can serve as an effective framework for generating comprehensive benchmark datasets that can be used for reliable performance assessment of comparative network analysis algorithms. Using this model, we constructed a large-scale network alignment benchmark, called NAPAbench, and evaluated the performance of several representative network alignment algorithms. Our analysis clearly shows the relative performance of the leading network algorithms, with their respective advantages and disadvantages. The algorithm and source code of the network synthesis model and the network alignment benchmark NAPAbench are publicly available at http://www.ece.tamu.edu/bjyoon/NAPAbench/.  相似文献   

6.
7.
The molecular chaperones ClpB (Hsp104) and DnaK (Hsp70) co-operate in the ATP-dependent resolubilization of aggregated proteins. A sequential mechanism has been proposed for this reaction; however, the mechanism and the functional interplay between both chaperones remain poorly defined. Here, we show for the first time that complex formation of ClpB and DnaK can be detected by using various types of affinity chromatography methods. The finding that the DnaK chaperone of Escherichia coli is not co-operating with ClpB from Thermus thermophilus further strengthens the specificity of this complex. The affinity of the complex is weak and interaction between both chaperones is nucleotide-dependent. The presence of ADP, which is shown to cause dissociation of ClpB(Tth), as well as ClpB deletion mutants incapable of oligomer formation prevent ClpB-DnaK complex formation. The experiments presented indicate a correlation between the oligomeric state of ClpB and its ability to interact with DnaK. The chaperone complex described here might facilitate transfer of intermediates between ClpB and DnaK during refolding of substrates from aggregates.  相似文献   

8.
Using a mAb (R-7), we have characterized a 54-kD protein of the chicken nuclear envelope. Based on its biochemical properties and subnuclear distribution p54 is likely to be an integral membrane component specific to the inner nuclear membrane. Fractionation experiments indicate that p54 interacts, directly or indirectly, with the nuclear lamina, and analysis of p54 in cultured cells suggests that this interaction is controlled by cell cycle-dependent posttranslational modification, most likely phosphorylation. Modification of p54 results in a slightly reduced electrophoretic mobility, and it converts the protein from a detergent-resistant to a detergent-extractable form. Detergent solubilization of p54 can be induced in vivo by treating isolated nuclei or nuclear envelopes with highly purified cdc2 kinase, one of the most prominent kinases active in mitotic cells. These results suggest that mitotic phosphorylation of p54 might contribute to control nuclear envelope dynamics during mitosis in vivo.  相似文献   

9.

Background

Nitrogen-containing bisphosphonates are the elected drugs for the treatment of diseases in which excessive bone resorption occurs, for example, osteoporosis and cancer-induced bone diseases. The only known target of nitrogen-containing bisphosphonates is farnesyl pyrophosphate synthase, which ensures prenylation of prosurvival proteins, such as Ras. However, it is likely that the action of nitrogen-containing bisphosphonates involves additional unknown mechanisms. To identify novel targets of nitrogen-containing bisphosphonates, we used a genome-wide high-throughput screening in which 5,936 Saccharomyces cerevisiae heterozygote barcoded mutants were grown competitively in the presence of sub-lethal doses of three nitrogen-containing bisphosphonates (risedronate, alendronate and ibandronate). Strains carrying deletions in genes encoding potential drug targets show a variation of the intensity of their corresponding barcodes on the hybridization array over the time.

Results

With this approach, we identified novel targets of nitrogen-containing bisphosphonates, such as tubulin cofactor B and ASK/DBF4 (Activator of S-phase kinase). The up-regulation of tubulin cofactor B may explain some previously unknown effects of nitrogen-containing bisphosphonates on microtubule dynamics and organization. As nitrogen-containing bisphosphonates induce extensive DNA damage, we also document the role of DBF4 as a key player in nitrogen-containing bisphosphonate-induced cytotoxicity, thus explaining the effects on the cell-cycle.

Conclusions

The dataset obtained from the yeast screen was validated in a mammalian system, allowing the discovery of new biological processes involved in the cellular response to nitrogen-containing bisphosphonates and opening up opportunities for development of new anticancer drugs.  相似文献   

10.
11.
Protein-protein interaction maps provide a valuable framework for a better understanding of the functional organization of the proteome. To detect interacting pairs of human proteins systematically, a protein matrix of 4456 baits and 5632 preys was screened by automated yeast two-hybrid (Y2H) interaction mating. We identified 3186 mostly novel interactions among 1705 proteins, resulting in a large, highly connected network. Independent pull-down and co-immunoprecipitation assays validated the overall quality of the Y2H interactions. Using topological and GO criteria, a scoring system was developed to define 911 high-confidence interactions among 401 proteins. Furthermore, the network was searched for interactions linking uncharacterized gene products and human disease proteins to regulatory cellular pathways. Two novel Axin-1 interactions were validated experimentally, characterizing ANP32A and CRMP1 as modulators of Wnt signaling. Systematic human protein interaction screens can lead to a more comprehensive understanding of protein function and cellular processes.  相似文献   

12.
Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs) is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors.  相似文献   

13.
Changes in secondary structure of DNA and non-histone chromosomal protein HMGB1 during the formation of the complex have been studied by circular dichroism and UV spectroscopy. It was demonstrated that the HMGB1 protein is able to change its secondary structure upon binding to DNA. Based on the assumption that there are two spectroscopically distinguishable forms of the HMGB1 in solution, we estimated the fraction of bound protein. The fraction of bound protein decreases at higher protein to DNA ratios r from 0.48 at r = 0.13 to 0.06 at r = 2.43. It was shown that HMGB1 is able to induce considerable changes in DNA structure, even when the amount of protein actually bound is low.  相似文献   

14.
To acquire system-level understanding of the intercellular junctional complex, protein–protein interactions occurring at the junctions of simple epithelial cells have been examined by network analysis. Although proper hubs (i.e., very rare proteins with exceedingly high connectivity) were absent from the junctional network, the most connected (albeit nonhub) proteins displayed a significant association with essential genes and contributed to the “small world” properties of the network (as shown by in vivo and in silico deletion, respectively). In addition, compared with a random network, the junctional network had greater tendency to form modules and subnets of densely interconnected proteins. Module analysis highlighted general organizing principles of the junctional complex. In particular, two major modules (corresponding to the tight junctions and to the adherens junctions/desmosomes) were linked preferentially to two other modules that acted as structural and signaling platforms.  相似文献   

15.
Systems biology approaches can reveal intermediary levels of organization between genotype and phenotype that often underlie biological phenomena such as polygenic effects and protein dispensability. An important conceptualization is the module, which is loosely defined as a cohort of proteins that perform a dedicated cellular task. Based on a computational analysis of limited interaction datasets in the budding yeast Saccharomyces cerevisiae, it has been suggested that the global protein interaction network is segregated such that highly connected proteins, called hubs, tend not to link to each other. Moreover, it has been suggested that hubs fall into two distinct classes: "party" hubs are co-expressed and co-localized with their partners, whereas "date" hubs interact with incoherently expressed and diversely localized partners, and thereby cohere disparate parts of the global network. This structure may be compared with altocumulus clouds, i.e., cotton ball-like structures sparsely connected by thin wisps. However, this organization might reflect a small and/or biased sample set of interactions. In a multi-validated high-confidence (HC) interaction network, assembled from all extant S. cerevisiae interaction data, including recently available proteome-wide interaction data and a large set of reliable literature-derived interactions, we find that hub-hub interactions are not suppressed. In fact, the number of interactions a hub has with other hubs is a good predictor of whether a hub protein is essential or not. We find that date hubs are neither required for network tolerance to node deletion, nor do date hubs have distinct biological attributes compared to other hubs. Date and party hubs do not, for example, evolve at different rates. Our analysis suggests that the organization of global protein interaction network is highly interconnected and hence interdependent, more like the continuous dense aggregations of stratus clouds than the segregated configuration of altocumulus clouds. If the network is configured in a stratus format, cross-talk between proteins is potentially a major source of noise. In turn, control of the activity of the most highly connected proteins may be vital. Indeed, we find that a fluctuation in steady-state levels of the most connected proteins is minimized.  相似文献   

16.
With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients.  相似文献   

17.
18.
A protein interaction network describes a set of physical associations that can occur between proteins. However, within any particular cell or tissue only a subset of proteins is expressed and so only a subset of interactions can occur. Integrating interaction and expression data, we analyze here this interplay between protein expression and physical interactions in humans. Proteins only expressed in restricted cell types, like recently evolved proteins, make few physical interactions. Most tissue‐specific proteins do, however, bind to universally expressed proteins, and so can function by recruiting or modifying core cellular processes. Conversely, most ‘housekeeping’ proteins that are expressed in all cells also make highly tissue‐specific protein interactions. These results suggest a model for the evolution of tissue‐specific biology, and show that most, and possibly all, ‘housekeeping’ proteins actually have important tissue‐specific molecular interactions.  相似文献   

19.
20.
Calreticulin (CRT), a major Ca2+-sequestering protein, has beenimplicated in a variety of cellular functions such as Ca2+ storage,signaling and chaperone activity within the cytoplasm and endoplasmicreticulum. To investigate the biological role of CRT in rice,21 partial cDNAs, encoding proteins that interacted with riceCRT in a yeast two-hybrid interaction-cloning system, were characterizedand the nucleotide sequences were found to be identical to eachother. A full-length cDNA of 3.5 kb, obtained from ricegenomic sequence data and 5' RACE, codes for a novel proteinof 966 amino acid residues and was designated as CRTintP (CRTinteracting protein). Primary sequence analysis of CRTintP showedno sequence homology with the known functional proteins; however,a potential ubiquitin-like domain at the N-terminal togetherwith a putative leucine zipper, a nuclear localization signaland several sites for serine/threonine kinases were evident.Cellular localization of CRTintP demonstrated its role in directinggreen fluorescent protein to the nucleus in onion epidermalcells. Northern and immunoblot analysis showed increased expressionof CRT and CRTintP in response to cold stress. Co-immunoprecipitationusing anti-CRT antibodies confirmed the existence of the CRT-CRTintPcomplex in vivo in the stressed leaf tissue, suggesting theirpotential role in regulating stress response. 4 Corresponding author: E-mail, skomatsu{at}affrc.go.jp; Fax, +81-298-38-7464.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号