首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.

Background  

Non-long terminal repeat (non-LTR) retrotransposons have contributed to shaping the structure and function of genomes. In silico and experimental approaches have been used to identify the non-LTR elements of the urochordate Ciona intestinalis. Knowledge of the types and abundance of non-LTR elements in urochordates is a key step in understanding their contribution to the structure and function of vertebrate genomes.  相似文献   

4.

Background  

Of the major families of long terminal repeat (LTR) retrotransposons, the Pao/BEL family is probably the least well studied. It is becoming apparent that numerous LTR retrotransposons and other mobile genetic elements have colonized the genome of the human blood fluke, Schistosoma mansoni.  相似文献   

5.
6.

Background

Long terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.

Results

Using a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.

Conclusions

All families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
  相似文献   

7.
8.
Computational methods for genome-wide identification of mobile genetic elements (MGEs) have become increasingly necessary for both genome annotation and evolutionary studies. Non-long terminal repeat (non-LTR) retrotransposons are a class of MGEs that have been found in most eukaryotic genomes, sometimes in extremely high numbers. In this article, we present a computational tool, MGEScan-non-LTR, for the identification of non-LTR retrotransposons in genomic sequences, following a computational approach inspired by a generalized hidden Markov model (GHMM). Three different states represent two different protein domains and inter-domain linker regions encoded in the non-LTR retrotransposons, and their scores are evaluated by using profile hidden Markov models (for protein domains) and Gaussian Bayes classifiers (for linker regions), respectively. In order to classify the non-LTR retrotransposons into one of the 12 previously characterized clades using the same model, we defined separate states for different clades. MGEScan-non-LTR was tested on the genome sequences of four eukaryotic organisms, Drosophila melanogaster, Daphnia pulex, Ciona intestinalis and Strongylocentrotus purpuratus. For the D. melanogaster genome, MGEScan-non-LTR found all known ‘full-length’ elements and simultaneously classified them into the clades CR1, I, Jockey, LOA and R1. Notably, for the D. pulex genome, in which no non-LTR retrotransposon has been annotated, MGEScan-non-LTR found a significantly larger number of elements than did RepeatMasker, using the current version of the RepBase Update library. We also identified novel elements in the other two genomes, which have only been partially studied for non-LTR retrotransposons.  相似文献   

9.
Retrotransposable elements are genetic entities which move and replicate within host cell genomes. We have previously reported on the structures and genomic distributions of two non-long terminal repeat (non-LTR) retrotransposons, DRE and Tdd-3, in the eukaryotic microorganism Dictyostelium discoideum. DRE elements are found inserted upstream, and Tdd-3 elements downstream, of transfer RNA (tRNA) genes with remarkable position and orientation specificities. The data set currently available from the Dictyostelium Genome Project led to the characterisation of two repetitive DNA elements which are related to the D. discoideum non-LTR retrotransposon Tdd-3 in both their structural properties and genomic distributions. It appears from our data that in the D. discoideum genome tRNA genes are major targets for the insertion of mobilised non-LTR retrotransposons. This may be interpreted as the consequence of a process of coevolution, allowing a viable population of retroelements to transpose without being deleterious to the small microbial host genome which carries only short intergenic DNA sequences. A new nomenclature is introduced to designate all tRNA gene-targeted non-LTR retrotransposons (TREs) in the D. discoideum genome. TREs inserted 5′ and 3′ of tRNA genes are named TRE5 and TRE3, respectively. According to this nomenclature DRE and Tdd-3 are renamed TRE5-A and TRE3-A, respectively. The new retroelements described in this study are named TRE3-B (formerly RED) and TRE3-C. Received: 27 May 1999 / Accepted: 23 July 1999  相似文献   

10.
11.

Background  

Transposable elements are major constituents of eukaryote genomes and have a great impact on genome structure and stability. Considering their mutational abilities, TEs can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution among several genomes is an essential condition to study their dynamics and to better understand their role in species evolution. DIRS1 -like retrotransposons are a particular group of retrotransposons according to their mode of transposition that implies a tyrosine recombinase. To date, they have been described in a restricted number of species in comparison with the LTR retrotransposons. In this paper, we determine the distribution of DIRS1 -like elements among 25 decapod species, 10 of them living in hydrothermal vents that correspond to particularly unstable environments.  相似文献   

12.
反转录转座子(retrotransposon)是真核生物中一类可移动因子,可分为LTR反转录转座子和非LTR反转录转座子。反转录转座子以高拷贝在植物界广泛分布,可以通过纵向和横向分别在世代之间和不同种之间进行传递,同一家族的反转录转座子具有高度的异质性. 在一些生物的和非生物的逆境条件下,反转录转座子的转录可以被激活。由于反转录转座子的特点,使其作为一种分子标记得以应用。S-SAP、IRAP、REMAP和RBIP等分子标记相继发展起来,在基因作图、生物遗传多样性与系统进化、品种鉴定等方面具有广泛的应用前景。  相似文献   

13.
14.

Background  

Several studies have shown that genomes contain a mixture of transposable elements, some of which are still active and others ancient relics that have degenerated. This is true for the non-LTR retrotransposon Helena, of which only degenerate sequences have been shown to be present in some species (Drosophila melanogaster), whereas putatively active sequences are present in others (D. simulans). Combining experimental and population analyses with the sequence analysis of the 12 Drosophila genomes, we have investigated the evolution of Helena, and propose a possible scenario for the evolution of this element.  相似文献   

15.

Background  

Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system.  相似文献   

16.

Background

Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood.

Methodology/Principal Findings

Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA.

Conclusions/Significance

Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.  相似文献   

17.
18.

Background  

Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for computational identification of transposable elements. LTR retrotransposons, an important subclass of transposable elements, are well suited for computational identification, as they contain long terminal repeats (LTRs).  相似文献   

19.
20.

Background  

Alu elements are a family of SINE retrotransposons in primates. They are classified into subfamilies according to specific diagnostic mutations from the general Alu consensus. It is now believed that there may be several retrotranspositionally-competent source genes within an Alu subfamily. To investigate the evolution of young Alu elements it is critical to have access to complete subfamilies, which, following the release of the final human genome assembly, can now be obtained using in silico methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号