首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Periostin (postn) is a secreted, extracellular matrix protein containing an EMI domain as well as four fasciclin I-like (Fas1) domains. Postn protein functions in cell adhesion, cell mobility, cell proliferation and gene regulation. Earlier studies have shown that postn is involved in different developmental processes such as somitogenesis, cardiogenesis and bone formation. Intriguingly, postn seems to be a very good candidate to establish novel therapies against cancer and chronic heart defects. Here we describe for the first time the spatio-temporal expression profile of postn during early development of Xenopus laevis. By semi-quantitative RT-PCR approaches, we demonstrate that postn is maternally expressed. Zygotic expression starts during early gastrulation and increases until stage 40. Whole mount in situ hybridization experiments revealed that postn is detectable in somites, the sensory layer of the epidermis, the roof plate, the notochord, the heart, migrating neural crest cells, cranial ganglia and forming cranial cartilage structures. Our results implicate a role of postn during Xenopus embryogenesis and represent a good starting point for future functional analyses.  相似文献   

2.
Epbl41l4a (erythrocyte protein band 4.1-like 4a, also named Nbl4) is a member of the band 4.1/Nbl4 (novel band 4.1-like protein 4) group of the FERM (4.1, ezrin, radixin, moesin) protein superfamily. Proteins encoded by this gene family are involved in many cellular processes such as organization of epithelial cells and signal transduction. On a molecular level, band 4.1/Nbl4 proteins have been shown to link membrane-associated proteins and lipids to the actin cytoskeleton. Epbl41l4a has also recently been identified as a target gene of the Wnt/β-catenin pathway. Here, we describe for the first time the spatio-temporal expression of epbl41l4a using Xenopus laevis as a model system. We observed a strong and specific expression of epb41l4a in the developing somites, in particular during segmentation as well as in the nasal and cranial placodes, pronephros, and neural tube. Thus, epbl41l4a is expressed in tissues undergoing morphogenetic movements, suggesting a functional role of epbl41l4a during these processes.  相似文献   

3.
Epigenetic modifications of histone play important roles for regulation of cell activity, such as cell division, cell death, and cell differentiation. A SET domain consisting of about 130 amino acids has lysine methyltransferase activity in the presence of the cosubstrate S-adenosyl-methionine. More than 60 SET domain-containing proteins have been predicted in various organisms. One of them, the SMYD family genes which contain a SET domain and a zinc-finger MYND domain are reported to regulate cell cycle and muscle formation. Here we examined the expression and function of smyd1 and 2 in Xenopus. smyd1 and 2 were expressed in various muscle tissues. While smyd1 expression was observed mainly in cardiac muscle and skeletal muscle, smyd2 expression was done abundantly in skeletal muscle and face region. Moreover, by loss-of-function experiments using antisense morpholino oligonucleotides, it was suggested that smyd1 and 2 related to muscle cells differentiation.  相似文献   

4.
Little is known about the impact of O-linked-N-acetylglucosaminylation (O-GlcNAc) in gametes production and developmental processes. Here we investigated changes in O-GlcNAc, UDP-GlcNAc and O-GlcNAc transferase (OGT) levels in Xenopus laevis from oogenesis to embryo hatching. We showed that in comparison to stage VI, stages I–V oocytes expressed higher levels of O-GlcNAc correlating changes in OGT expression, but not in UDP-GlcNAc pools. Upon progesterone stimulation, an O-GlcNAc level burst occurred during meiotic resumption long before MPF and Mos-Erk2 pathways activations. Finally, we observed high levels of O-GlcNAc, UDP-GlcNAc and OGT during segmentation that decreased concomitantly at the onset of gastrulation. Nevertheless, no correlation between the glycosylation, the nucleotide-sugar and the glycosyltransferase was observed after neurulation. Our results show that O-GlcNAc is regulated throughout oogenesis and development within a complex pattern and suggest that dysfunctions in the dynamics of this glycosylation could lead to developmental abnormalities.  相似文献   

5.

Background  

Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate their tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus (strain N1) in which the BMP inhibitor Noggin can be over-expressed at any time during development. Activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles.  相似文献   

6.
We have shown that the sarcoplasmic myosin heavy-chain (MyHC) isoform xtMyHC-101d is highly and specifically expressed in the larynx of the aquatic anuran, Xenopus tropicalis. In male larynges, the predominant MyHC isoform is xtMyHC-101d, while in females, another isoform, xtMyHC-270c, predominates. The X. tropicalis genome has been sequenced in its entirety, and xtMyHC-101d is part of a specific array of xtMyHC genes expressed otherwise in embryonic muscles (Nasipak and Kelley, Dev Genes Evol, in press, 2008). The administration of the androgen dihydrotestosterone increases the expression of xtMyHC-101d in juvenile larynges of both sexes. Using ATPase histochemistry, we found that in adults, X. tropicalis male laryngeal muscle contains only fast-twitch fibers, while the female laryngeal muscle contains a mix of fast- and slow-twitch fibers. Juvenile larynges are female-like in fiber type composition (44% slow twitch, 56% fast twitch); androgen treatment increases the percentage of fast-twitch fibers to 86%. xtMyHC-101d predominates in larynges of dihydrotestosterone-treated juveniles but not in larynges of untreated juveniles. We compared the larynx-specific expression of xtMyHC genes in X. tropicalis to the MyHC gene expressed in X. laevis larynx (xlMyHC-LM) by sequencing the entire xlMyHC-LM gene. The androgen-regulated xtMyHC that predominates in the male larynx of X. tropicalis is not the gene phylogenetically most similar to xlMyHC-LM at the nucleotide level but is instead a similar isoform found in the same MyHC array and expressed in the embryonic muscle.  相似文献   

7.
8.
9.
We measured ultraweak emissions of the Xenopus laevis eggs and embryos during normal development and under the influence of stress factors in a spectral range of 250 to 800 nm using a photomultiplier. The registered emissions were analyzed by several basic characteristics: mean intensity, histograms, kurtosis, linear trends, and Fourier spectra. We followed relationships between these parameters and developmental stage, as well as the number of individuals in optic contact with each other. The ultraweak emissions did not differ from the background at all developmental stages according to the mean intensity. But Fourier analysis revealed the reliable presence of a number of spectral lines of ultraweak emission, predominantly in the range of 10?2–50 Hz, in the embryos at developmental stages 2 to 11. The intensity of ultraweak emissions reliably decreased within the first 10 min after egg activation and fertilization, as well as in the case of optic interaction between groups of embryos. Sharp cooling, increase in osmotic medium pressure, and transfer in a Ca2+ and Mg2+-free medium induced a short term (~1–5 min) increase in the mean intensity of ultraweak emission. We studied specific features of ultraweak emissions from different parts of the embryo. The intensity of emission from the animal part of early blastula exceeded those from the vegetal area and entire embryo. Separated fragments of the lateral ectoderm at the neurula stage had higher mean intensities of ultraweak emission than intact embryos at the same developmental stages.  相似文献   

10.
11.
12.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

13.
Ficolins are proteins characterized by the presence of collagen- and fibrinogen-like domains. Two of three human ficolins, L-ficolin and H-ficolin, are serum lectins and are thought to play crucial roles in host defense through opsonization and complement activation. To elucidate the evolution of ficolins and the primordial complement lectin pathway, we cloned four ficolin cDNAs from Xenopus laevis, termed Xenopus ficolin (XeFCN) 1, 2, 3 and 4. The deduced amino acid sequences of the four ficolins revealed the conserved collagen- and fibrinogen-like domains. The full sequences of the four ficolins showed a 42-56% identity to human ficolins, and 60-83% between one another. Northern blots showed that XeFCN1 was expressed mainly in liver, spleen and heart, and XeFCN2 and XeFCN4 mainly in peripheral blood leukocytes, lung and spleen. We isolated ficolin proteins from Xenopus serum by affinity chromatography on N-acetylglucosamine-agarose, followed by ion-exchange chromatography. The final eluate showed polymeric bands composed of two components of 37 and 40 kDa. The N-terminal amino acid sequences and treatment with endoglycosidase F showed that the two bands are the same XeFCN1 protein with different masses of N-linked sugar. The polymeric form of the two types of XeFCN1 specifically recognized GlcNAc and GalNAc residues. These results suggest that like human L-ficolin, XeFCN1 functions in the circulation through its lectin activity.  相似文献   

14.
The cement gland in batrachians is a temporal ectodermic organ which is necessary for an embryo’s attachment to the substrate. In this review, some notions about the origin of the cement gland of Xenopus laevis frogs, its functioning, genes being expressed in it, and regulation of its formation and development are provided. The role of some homologies of agr genes of the cement gland in Xenopus laevis is noted at different conditions of other animals and man.  相似文献   

15.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

16.
African clawed frogs (Xenopus laevis) endure bouts of severe drought in their natural habitats and survive the loss of approximately 30% of total body water due to dehydration. To investigate molecular mechanisms employed by X. laevis during periods of dehydration, the heat shock protein response, a vital component of the cytoprotective stress response, was characterized. Using western immunoblotting and multiplex technology, the protein levels of HSP27, HSP40, HSP60, HSP70, HSC70, and HSP90 were quantified in the liver, skeletal muscle, kidney, lung, and testes from control frogs and those that underwent medium or high dehydration (~16 or ~30% loss of total body water). Dehydration increased HSP27 (1.45–1.65-fold) in the kidneys and lungs, and HSP40 (1.39–2.50-fold) in the liver, testes, and skeletal muscle. HSP60 decreased in response to dehydration (0.43–0.64 of control) in the kidneys and lungs. HSP70 increased in the liver, lungs, and testes (1.39–1.70-fold) during dehydration, but had a dynamic response in the kidneys (levels increased 1.57-fold with medium dehydration, but decreased to 0.56 of control during high dehydration). HSC70 increased in the liver and kidneys (1.20–1.36-fold), but decreased in skeletal muscle (0.27–0.55 of control) during dehydration. Lastly, HSP90 was reduced in the kidney, lung, and skeletal muscle (0.39–0.69 of control) in response to dehydration, but rose in the testes (1.30-fold). Overall, the results suggest a dynamic tissue-specific heat shock protein response to whole body dehydration in X. laevis.  相似文献   

17.
Control of organ size is the product of coordinated cell division and expansion. In plants where one of these pathways is perturbed, organ size is often unaffected as compensation mechanisms are brought into play. The number of founder cells in organ primordia, dividing cells, and the period of cell proliferation determine cell number in lateral organs. We have identified the Antirrhinum FORMOSA (FO) gene as a specific regulator of floral size. Analysis of cell size and number in the fo mutant, which has increased flower size, indicates that FO is an organ-specific inhibitor of cell division and activator of cell expansion. Increased cell number in fo floral organs correlated with upregulation of genes involved in the cell cycle. In Arabidopsis the AINTEGUMENTA (ANT) gene promotes cell division. In the fo mutant increased cell number also correlates with upregulation of an Antirrhinum ANT-like gene (Am-ANT) in inflorescences that is very closely related to ANT and shares a similar expression pattern, suggesting that they may be functional equivalents. Increased cell proliferation is thought to be compensated for by reduced cell expansion to maintain organ size. In Arabidopsis petal cell expansion is inhibited by the BIGPETAL (BPE) gene, and in the fo mutant reduced cell size corresponded to upregulation of an Antirrhinum BPE-like gene (Am-BPE). Our data suggest that FO inhibits cell proliferation by negatively regulating Am-ANT, and acts upstream of Am-BPE to coordinate floral organ size. This demonstrates that organ size is modulated by the organ-specific control of both general and local gene networks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

19.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

20.
Hypercephaly, in the form of lateral extensions of the head capsule, is observed in several families of Diptera. A particularly exaggerated form is found in Diopsid stalk-eyed flies, in which both eyes and antennae are laterally displaced at the end of stalks. The processes of early development and specification of the head capsule in stalk-eyed flies are similar to those in Drosophila melanogaster. In Drosophila the homeobox gene ocelliless (oc) shows a mediolateral gradient of expression across the region of the eye-antennal imaginal disc that gives rise to the head capsule and specifies the development of different head structures. The genes and developmental mechanisms that subsequently define head shape in Drosophila and produce hypercephaly in stalk-eyed flies remain unclear. To address this, we performed an enhancer trap screen for Drosophila genes expressed in the same region as oc and identified the homeobox gene defective proventriculus (dve). In the eye-antennal imaginal disc, dve is coexpressed with oc in the region that gives rise to the head capsule and is active along the medial edge of the antennal disc and in the first antennal segment. Analyses of dve expression in mutant eye-antennal discs are consistent with it acting downstream of oc in the development of the head capsule. We confirm that orthologues of dve are present in a diverse panel of five stalk-eyed fly species and analyse patterns of dve sequence variation within the clade. Our results indicate that dve expression and sequence are both highly conserved in stalk-eyed flies.M. Carr and I. Hurley contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号