首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two relatively pure polysaccharides H3-a1 and H3-b1 had been isolated from the brown seaweed Hy-droclathrus clathratus. They were characterized by HPLC, ultraviolet scanning, gas chromatography, infrared spectroscopy and elemental analysis, and shown to be two different sulfated polysaccharides with different monosaccharide content, but both with high relative molecular mass. They contained some proteins and uronic acid respectively. The sulfate content and bioactivity of these polysaccha-rides varied during purification. The fractions derived from the hot water extract also exhibited low anticoagulant effect. This is the first time that the antiherpetic and anticoagulant activities were evaluated for the polysaccharides from the Hong Kong brown seaweed Hydroclathrus clathratus.  相似文献   

2.
3.
A sulfated polysaccharide, designated HC-b1, was isolated from the brown seaweed Hydroclathrus clathratus. It was found to be a strong inhibitor of herpes simplex virus type 1 (HSV-1), including acyclovir-resistant strain and clinical strain. HC-b1 inhibited the plaque formation of HSV-1 in a dose-dependent manner. It could protect Vero cells from infection by HSV-1 if the cells were incubated with HC-b1 before exposure to the virus. It also had inactivating effect against HSV-1 since the pretreatment of the virus with HC-b1 caused significant reduction of viral infectivity. Time of addition studies demonstrated that HC-b1 exerted its antiviral action at the early stage of virus replication cycle. The presence of HC-b1 could not effectively inhibit the replication of HSV-1 about 45 min after the penetration period started. The antiviral action of HC-b1 appeared to inhibit the attachment of herpes simplex virus on host cell membrane through interfering with the processes of adsorption and penetration.  相似文献   

4.
Seven sites in Bahía de los Angeles, northern Gulf of California, were sampled seasonally over a three-year period. Five species of brown algae previously not recorded from this bay were identified: Ralfsia pacifica, Sporochnus balleanus, Hydroclathrus clathratus, Colpomenia sinuosa and Padina mexicana. Of these, H. clathratus also provided a new record for the northern Gulf of California. One species previously recorded from the bay, Dictyopteris undulata, was not observed. On a seasonal basis, temperature and biodiversity showed an inverse relationship: highest species numbers occurred in spring, when temperatures were lowest, and lowest species numbers occurred in autumn when temperatures were highest. Most species of brown algae in Baífa de los Angeles are annuals.  相似文献   

5.
Sulfated polysaccharides (fucans and fucoidans) from brown algae show several biological activities, including anticoagulant and anti-inflammatory activities. We have extracted a sulfated heterofucan from the brown seaweed Lobophora variegata by proteolytic digestion, followed by acetone fractionation, molecular sieving, and ion-exchange chromatography. Chemical analyses and 13C-NMR and IR spectroscopy showed that this fucoidan is composed of fucose, galactose, and sulfate at molar ratios of 1:3:2. We compared the anticoagulant activity of L. variegata fucoidan with those of a commercial sulfated polysaccharide (also named fucoidan) from Fucus vesiculosus and heparin. The experimental inflammation models utilized in this work revealed that fucoidan from L. variegata inhibits leukocyte migration to the inflammation site. Ear swelling caused by croton oil was also inhibited when sulfated polysaccharides from F. vesiculosus and L. variegata were used. The precise mechanism of different action between homo-and heterofucans is not clear; nevertheless, the polysaccharides studied here may have therapeutic potential in inflammatory disorders. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 9, pp. 1265–1273.  相似文献   

6.
A sulfated polysaccharide with anticoagulant properties was isolated from the fermented brown seaweed Sargassum fulvellum. Freeze-dried S. fulvellum was fermented in an incubator for 10th week at 25°C to convert seaweed macromolecules into anticoagulant sulfated polysaccharides (ASP). Anticoagulant activity was determined by an activated partial thromboplastin time (APTT) test using citrated human blood plasma. The 8th week S. fulvellum crude seaweed extract (SWE) exhibited the highest blood anticoagulant activity. Therefore, 8th week crude SWE was used for purification of ASP by two steps; DEAE cellulose anion-exchange followed by Sepharose 4B chromatography. The isolated ASP showed a single spot on agarose gel electrophoresis, which confirmed the purification status of our ASP. Polyacrylamide gel electrophoresis (PAGE) analysis showed that the molecular mass of the purified ASP was between 8 and 20 kDa. Polysaccharide and sulfate concentrations of the purified ASP were 180 and 29.70 μg mL−1 respectively. ASP recovery was 1.32% (w/w) from the crude polysaccharide applied to the DEAE column. Purified ASP had a pH of 3.86 and was considered an acidic polysaccharide. Moreover, both ASP and heparin showed a relative clotting factor of 27.47 at the concentrations of 180 and 60 μg mL−1 respectively. Therefore, S. fulvellum ASP can be considered a weaker anticoagulant than heparin. Results of the APTT, PT, and TT clotting assays showed that ASP was able to inhibit both intrinsic and extrinsic blood coagulation pathways. Finally, this study established a feasible and simple experimental protocol to isolate anticoagulant from fermented seaweeds leading to potential further development of anticoagulant agent for the pharmaceutical industry.  相似文献   

7.
Fucose-containing sulfated polysaccharides can be extracted from the brown seaweed, Sargassum sp. It has been reported that fucose-rich sulfated polysaccharides from brown seaweeds exert different beneficial biological activities including anti-inflammatory, anticoagulant, and anti-viral effects. Classical extraction of fucose-containing sulfated polysaccharides from brown seaweed species typically involves extended, multiple-step, hot acid, or CaCl2 treatments, each step lasting several hours. In this work, we systematically examined the influence of acid concentration (HCl), time, and temperature on the yield of fucose-containing sulfated polysaccharides (FCSPs) in statistically designed two-step and single-step multifactorial extraction experiments. All extraction factors had significant effects on the fucose-containing sulfated polysaccharides yield, with the temperature and time exerting positive effects, and the acid concentration having a negative effect. The model defined an optimized single-step FCSPs extraction procedure for Sargassum sp. (a brown seaweed). A maximal fucose-containing sulfated polysaccharides yield of ~7% of the Sargassum sp. dry matter was achieved by the optimal extraction procedure of: 0.03?M HCl, 90°C, 4?h. HPAEC-PAD analysis confirmed that fucose, galactose, and glucuronic acid were the major constituents of the polysaccharides obtained by the optimized method. Lower polysaccharide yield, but relatively higher fucose content was obtained with shorter extraction time. The data also revealed that classical multi-step extraction with acid ≥0.2?M HCl at elevated temperature and extended time had a detrimental effect on the FCSPs yield as this treatment apparently disrupted the structural integrity of the polymer and evidently caused degradation of the carbohydrate chains built up of fucose residues.  相似文献   

8.
This study revisited the taxonomy and diversity of brown macroalgae within the Scytosiphonaceae family in French Polynesia, which had previously been recognized as encompassing only six species. Using the chloroplast and mitochondrial genes rbcL, psbA, and cox3 as molecular markers in conjunction with morpho-anatomical observations, we unveiled the presence of 11 species spanning six genera: Chnoospora minima, Colpomenia claytoniae, Co. sinuosa [groups IIIa and IIIb], Hydroclathrus rapanuii, H. tenuis, H. tilesii, Manzaea minuta, Pseudochnoospora implexa, Rosenvingea australis, and the newly described species R. polynesiensis sp. nov. and R. tahitiensis sp. nov. This encompasses the recognition of two previously unreported genera in this region: Manzaea and Pseudochnoospora. Sequences were successfully acquired for four taxa that had been documented previously, while the absence of sequences for H. clathratus and H. tumulis in French Polynesia raises queries about their presence in this region. With these additions, the total species count now stands at 13 (including H. clathratus and H. tumulis), one being an endemic species. The molecular-assisted alpha taxonomic approach used here allowed for a critical revision of the Scytosiphonaceae species checklist for French Polynesia. The diversity revealed in this region accounts for a substantial 20% of the family's global diversity. Additionally, our study presents an updated species-level phylogeny for the Scytosiphonaceae.  相似文献   

9.
ABSTRACT

Cellulose is one of the major constituents of seaweeds, but reports of mechanisms in microbial seaweed degradation in marine environment are limited, in contrast to the multitude of reports for lignocellulose degradation in terrestrial environment. We studied the biochemical characteristics for marine cellulolytic bacterium Gilvimarinus japonicas 12-2T in seaweed degradation. The bacterial strain was found to degrade green and red algae, but not brown algae. It was shown that the bacterial strain employs various polysaccharide hydrolases (endocellulase, agarase, carrageenanase, xylanase, and laminarinase) to degrade seaweed polysaccharides. Electrophoretic analysis and peptide sequencing showed that the major protein bands on the electrophoresis gel were homologous to known glucanases and glycoside hydrolases. A seaweed hydrolysate harvested from the bacterial culture was found useful as a substrate for yeasts to produce ethanol. These findings will provide insights into possible seaweed decomposition mechanisms of Gilvimarinus, and its biotechnological potential for ethanol production from inedible seaweeds.  相似文献   

10.
In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.  相似文献   

11.
The production of methane biofuel from seaweeds is limited by the hydrolysis of polysaccharides. The rumen microbiota of seaweed‐eating North Ronaldsay sheep was studied for polysaccharidic bacterial isolates degrading brown‐seaweed polysaccharides. Only nine isolates out of 65 utilized > 90% of the polysaccharide they were isolated on. The nine isolates (eight Prevotella spp. and one Clostridium butyricum) utilized whole Laminaria hyperborea extract and a range of seaweed polysaccharides, including alginate (seven out of nine isolates), laminarin and carboxymethylcellulose (eight out of nine isolates); while two out of nine isolates additionally hydrolysed fucoidan to some extent. Crude enzyme extracts from three of the isolates studied further had diverse glycosidases and polysaccharidase activities; particularly against laminarin and alginate (two isolates were shown to have alginate lyase activity) and notably fucoidan and carageenan (one isolate). In serial culture rumen microbiota hydrolysed a range of seaweed polysaccharides (fucoidan to a notably lesser degree) and homogenates of L. hyperborea, mixed Fucus spp. and Ascophyllum nodosum to produce methane and acetate. The rumen microbiota and isolates represent potential adjunct organisms or enzymes which may improve hydrolysis of seaweed components and thus improve the efficiency of seaweed anaerobic digestion for methane biofuel production.  相似文献   

12.
Extraction with hydrochloric acid (pH 2.5) of the brown alga Padina tetrastromatica afforded water-soluble and water-insoluble polysaccharides. The water-soluble polysaccharide was fractionated using cetyltritmethyl ammonium bromide and chromatography on DEAE-cellulose and Sephadex G-100. A neutral laminaran like glucan and two new sulphated heteropolysaccharides comprising d-glucuronic acid, l-fucose, l-rhamnose, d-xylose, d-arabinose, d-galactose, d-glucose and half-ester sulphate were obtained. The alginic acid isolated from this brown seaweed was found to be predominantly of poly 1 → 4β-d-mannuronic acid type. The water-soluble sulphated polymer showed high anticoagulant activity.  相似文献   

13.
Surface plasmon resonance is an important technique for studying molecular interactions and was used to investigate the molecular interaction of anticoagulant sulfated polysaccharides purified from an enzymatic hydrolysate of the brown alga Ecklonia cava (ECA) with blood coagulation factors. In a direct binding assay, binding affinity between ECA/antithrombin III (ATIII) and activated blood coagulation factors was in the order: factor VIIa (FVIIa) > factor Xa (FXa) > thrombin (FIIa); kinetic analysis determined K D values of ECA for FVIIa, FXa, and FIIa of 15.1, 45.0 and 65.0 nM, respectively. Therefore, ECA strongly and selectively (FVII, FX, and FII) enhanced ATIII-mediated coagulation factor inhibition in both the extrinsic and common coagulation pathways. This may contribute to its high anticoagulant activity in vitro. The low cytotoxicity of ECA to venous endothelial cell line (ECV-304) also expands its value in future in vivo studies. However, to utilize it as a model for novel anticoagulant agents, its possible interference with other anticoagulant mechanisms must be addressed.  相似文献   

14.
Two sulfated polysaccharides WF1 and WF3 were isolated from marine green algae Monostroma nitidum, and their structural characteristics were determined. Anticoagulant activities of WF1 and WF3 were evaluated by assays of the activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), antithrombin and anticoagulation factor Xa activities. The results showed that WF1 and WF3 had similar high contents of rhamnose, whereas their sulfate contents, sulfation positions, molecular sizes and linkage patterns of rhamnose residues were different. The bioassay results demonstrated that WF1 and WF3 had high anticoagulant activities, and were potent thrombin inhibitors mediated by heparin cofactor II, especially WF3. They also hastened thrombin and coagulation factor Xa inhibition by potentiating antithrombin III, but at a lower effectiveness. The differences of anticoagulant activities between WF1 and WF3 were directly due to their structural features discrepancy.  相似文献   

15.
During the last decade brown seaweeds attracted much attention as a source of polysaccharides, namely laminarans, alginic acids, and sulfated polysaccharides—fucoidans, with various structures and biological activities.In this study, sulfated polysaccharides were isolated from brown seaweeds Saccharina japonica (formerly named Laminaria) and Undaria pinnatifida and their antitumor activity was tested against human breast cancer T-47D and melanoma SK-MEL-28 cell lines.The sulfated polysaccharide form S. japonica was highly branched partially acetylated sulfated galactofucan, built up of (1→3)-α-l-fucose residues. The sulfated polysaccharide from U. pinnatifida was partially acetylated highly sulfated galactofucan consisting of (1→3)- or (1→3);(1→4)-α-l-fucose residues.Fucoidans from S. japonica and U. pinnatifida distinctly inhibited proliferation and colony formation in both breast cancer and melanoma cell lines in a dose-dependent manner. These results indicated that the use of sulfated polysaccharides from brown seaweeds S. japonica and U. pinnatifida might be a potential approach for cancer treatment.  相似文献   

16.
Helicobacter pylori possesses a broad spectrum of pathogenic factors that allow it to survive and colonize the gastric mucosa, and thus, the pathogenetic targets, which have the same diversity, require search for and the development of alternative, effective, and innocuous means for the eradication of H. pylori. In recent years, fucoidans have been extensively studied due to the numerous interesting biological activities, including the anti‐adhesive, anti‐oxidative, antitoxic, immunomodulatory, anticoagulant, and anti‐infection effects. This review summarizes the data on the effects of extracts and sulfated polysaccharides of marine algae, mainly fucoidans, on pathogenic targets in Helicobacter infection. The pathogenetic targets for therapeutic agents after H. pylori infection, such as flagellas, urease, and other enzymes, including adhesins, cytotoxin A (VacA), phospholipase, and L‐8, are characterized here. The main target for the sulfated polysaccharides of seaweed is cell receptors of the gastric mucosa. This review presents the published data about the pleiotropic anti‐inflammatory effects of polysaccharides on the gastric mucosa. It is known that fucoidan and other sulfated polysaccharides from algae have anti‐ulcer effects, prevent the adhesion of H. pylori to, and reduce the formation of biofilm. The authors speculate that the effect of sulfated polysaccharides on the infectious process caused by H. pylori is related to their action on innate and adaptive immunity cells, and also anti‐oxidant and antitoxic potential. Presented in the review are materials indicated for the study of extracts and sulfated polysaccharides from seaweed during H. pylori infection, as these compounds are characterized by multimodality actions. Based on the analysis of literary materials in recent years, the authors concluded that fucoidan can be attributed to the generation of new candidates to create drugs intended for the inclusion in the scheme of eradication therapy of H. pylori infection.  相似文献   

17.
Life-history studies in culture were carried out on Colpomenia sinuosa (Mertens ex Roth) Derbès et Solier and Hydroclathrus clathratus (C. Agardh) Howe (Scytosiphonales, Phaeophyceae) from Japan. These species showed a heteromorphic life-history pattern with an alternation between erect thalli bearing plurilocular zoidangia and prostrate thalli bearing ectocarpoid plurilocular and unilocular zoidangia. Plurizoids released from erect and prostrate thalli developed into prostrate thalli. Unizoids, however, developed into erect thalli. Prostrate thalli produced plurilocular zoidangia in long-day conditions and unilocular zoidangia in short-day conditions at 10-20°C. Prostrate thalli of C. sinuosa formed ascocysts. Germlings of both species did not grow at 5°C.  相似文献   

18.
Sulfated polysaccharides from the green algae Ulva conglobata were isolated and prepared by extraction in hot water, precipitation with ethanol and purification by ion-exchange and size-exclusion column chromatography. The characterizations of the sulfated polysaccharides were defined, and containing 23.04–35.20% sulfate ester groups, 10.82–14.91% uronic acid and 3.82–4.51% protein. Gas chromatography analysis shows that the sulfated polysaccharides from Ulva conglobata are mainly consisted of rhamnose with variable contents of glucose and fucose, trace amounts of xylose, glactose and mannose. The anticoagulant properties of the sulfated polysaccharides were compared with those of heparin by studying the activated partial thromboplastin time using normal human plasma. The sulfated polysaccharide from Ulva conglobata collected in Qingdao, China is the most potent among the sulfated polysaccharides tested. The mechanism of anticoagulant activity mediated by the sulfated polysaccharides is due to the direct inhibition of thrombin and the potentiation of heparin cofactor II.  相似文献   

19.
《Process Biochemistry》2014,49(8):1352-1361
In this study, we isolated two fucosylated polysaccharide sulfates (ACP and HOP) from sea cucumber Acaudina molpadioidea and Holothuria nobilis, with an average molecular weight of 90.8 and 135.8 kDa, respectively. We investigated and compared their anticoagulant activities through anticoagulant assay. Our data showed that both polysaccharides possessed good anticoagulant activity, but HOP's activity was higher than that of ACP. Due to the different anticoagulant activities of ACP and HOP, we compared the preliminary structural characterizations of these two sulfated polysaccharides, and found that both ACP and HOP consisted of β-d-glucuronic acid, β-d-N-acetyl-galactosamine, α-l-fucose and sulfate groups. ACP and HOP had almost identical ratios of glucuronic acid, N-acetyl-galactosamine and fucose. However, the sulfate contents and sulfation patterns of fucose residues of ACP and HOP were obviously different. There were 4-O-sulfated fucose, 3,4-O-disulfated fucose and 2,4-O-disulfated fucose in ACP, but only 3-O-sulfated fucose and 2,4-O-disulfated fucose were present in HOP. Therefore, their distinct anticoagulant activities might be due to the different sulfate contents and sulfation patterns of their fucose residues.  相似文献   

20.
Aqueous extracts of Ascophyllum nodosum and several other brown seaweeds are manufactured commercially and widely distributed for use on agricultural crops. The increasingly regulated international trade in such products requires that they be standardized and defined to a degree not previously required. We examined commercially available extracts using quantitative 1H NMR and principal components analysis (PCA) techniques. Extracts manufactured over a 4-year period using the same process exhibited characteristic profiles that, on PCA, clustered as a discrete group distinct from the other commercial products examined. In addition to recognizing extracts made from different seaweeds, analysis of the 1H spectra in the 0.35–4.70 ppm region allowed us to distinguish amongst extracts produced from the same algal species by different manufacturers. This result established that the process used to make an extract is an important variable in defining its composition. A comparison of the 1H NMR integrals for the regions 1.0–3.0 ppm and 3.0–4.38 ppm revealed small but significant changes in the A. nodosum spectra that we attribute to seasonal variation in gross composition of the harvested seaweed. Such changes are reflected in the PCA scores plots and contribute to the scatter observed within the data point cluster observed for Acadian soluble extracts when all data are pooled. Quantitative analysis using 1H NMR (qNMR) with a certified external standard (caffeine) showed a linear relationship with extract concentration over at least an order of magnitude (2.5–33 mg/mL; R 2 > 0.97) for both spectral regions integrated. We conclude that qNMR can be used to profile (or “fingerprint”) commercial seaweed extracts and to quantify the amount of extract present relative to a suitably chosen standard. Issued as NRCC no. 42,652.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号