首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Models for transmission of disease with immigration of infectives   总被引:22,自引:0,他引:22  
Simple models for disease transmission that include immigration of infective individuals and variable population size are constructed and analyzed. A model with a general contact rate for a disease that confers no immunity admits a unique endemic equilibrium that is globally stable. A model with mass action incidence for a disease in which infectives either die or recover with permanent immunity has the same qualitative behavior. This latter result is proved by reducing the system to an integro-differential equation. If mass action incidence is replaced by a general contact rate, then the same result is proved locally for a disease that causes fatalities. Threshold-like results are given, but in the presence of immigration of infectives there is no disease-free equilibrium. A considerable reduction of infectives is suggested by the incorporation of screening and quarantining of infectives in a model for HIV transmission in a prison system.  相似文献   

2.
A basic assumption of many epidemic models is that populations are composed of a homogeneous group of randomly mixing individuals. This is not a realistic assumption. Most actual populations are divided into a number of subpopulations, within which there may be relatively random mixing, but among which there is nonrandom mixing. As a consequence of the structuring of the population, there are several sources of heterogeneity within populations that can affect the course of an infection through the population. Two of these sources of heterogeneity are differences in contact number between subpopulations, and differences in the patterns of contact among subpopulations. A model for the spread of a disease in such a population is described. The model considers two levels of interaction: interactions between individuals within a subpopulation because of geographic proximity, and interactions between individuals of the same or different subpopulations because of attendance at common social functions. Because of this structure, it is possible to analyze with the model both heterogeneity in contact number and variation in the patterns of contact. A stability analysis of the model is presented which shows that there is a unique threshold for disease maintenance. Below the threshold the disease goes extinct, and the equilibrium is globally asymptotically stable. Above the threshold, the extinction equilibrium is unstable, and there is a unique endemic equilibrium. The analysis presents a sufficient condition for disease maintenance, which determines critical subpopulation sizes above which the disease cannot go extinct. The condition is a simple inequality relating the removal rate of infectives to the infection rate of susceptibles. In addition, bounds on the actual threshold and the effect of symmetry in the interaction matrix on the threshold are presented.  相似文献   

3.
We analyse a periodically driven SIR epidemic model for childhood related diseases, where the contact rate and vaccination rate parameters are considered periodic. The aim is to define optimal vaccination strategies for control of childhood related infections. Stability analysis of the uninfected solution is the tool for setting up the control function. The optimal solutions are sought within a set of susceptible population profiles. Our analysis reveals that periodic vaccination strategy hardly contributes to the stability of the uninfected solution if the human residence time (life span) is much larger than the contact rate period. However, if the human residence time and the contact rate periods match, we observe some positive effect of periodic vaccination. Such a vaccination strategy would be useful in the developing world, where human life spans are shorter, or basically in the case of vaccination of livestock or small animals whose life-spans are relatively shorter.  相似文献   

4.
This paper examines how two countries would allocate resources at the onset of an epidemic when they seek to protect their own populations by minimizing the total number of infectives over the entire time horizon. We model this situation as a game between selfish countries, where players strategically allocate their resources in order to minimize the total number of infected individuals in their respective populations during the epidemic. We study this problem when the initial number of infectives is very small, which greatly simplifies the analysis. We show in this framework that selfish countries always allocate their resources so as to bring the effective reproduction ratio below one and avoid a major outbreak. When a major outbreak is avoidable, we further identify the necessary and sufficient conditions under which the individual allocation decisions of selfish countries match the decision that a central planner would make in order to minimize the total number of infectives in the whole population (without distinguishing between countries).  相似文献   

5.
We investigate two cases of a sharp change of incidencec functions on the dynamics of a susceptible-infective-susceptible epidemic model. In the first case, low population levels have mass action incidence, while high population levels have proportional incidence, the switch occurring when the total population reaches a certain threshold. Using a modified Dulac theorem, we prove that this system has a single equilibrium which attracts all solutions for which the disease is present and the population remains bounded. In the second case, an increase of the number of infectives leads to a mass action term being added to a standard incidence term. We show that this allows a Hopf bifurcation to occur, with periodic orbits being generated when a locally asymptotically stable equilibrium loses stability.  相似文献   

6.
Global analysis of an epidemic model with nonmonotone incidence rate   总被引:2,自引:0,他引:2  
In this paper we study an epidemic model with nonmonotonic incidence rate, which describes the psychological effect of certain serious diseases on the community when the number of infectives is getting larger. By carrying out a global analysis of the model and studying the stability of the disease-free equilibrium and the endemic equilibrium, we show that either the number of infective individuals tends to zero as time evolves or the disease persists.  相似文献   

7.
This paper deals with two types of simple epidemic models, namely, deterministic and stochastic wherein the latent period is assumed to be positive. In the deterministic epidemic model, the distributions of susceptibles, inactive infectives, active infectives and that of epidemic curve which gives the rate at which new infections take place have been obtained. The expression for the expected time of the entire epidemic has been derived. Also the partial differential equation for the moment generating function of the proportion of susceptibles in the population is established. In the end, we have studied a stochastic approach of the system.  相似文献   

8.
An epidemic model with a limited resource for treatment is proposed to understand the effect of the capacity for treatment. It is assumed that treatment rate is proportional to the number of infectives below the capacity and is a constant when the number of infectives is greater than the capacity. It is found that a backward bifurcation occurs if the capacity is small. It is also found that there exist bistable endemic equilibria if the capacity is low.  相似文献   

9.
Most multipopulation epidemic models are of the contact distribution type, in which the locations of successive contacts are chosen independently from appropriate contact distributions. This paper is concerned with an alternative class of models, termed dynamic population epidemic models, in which infectives move among the populations and can infect only within their current population. Both the stochastic and deterministic versions of such models are considered. Their threshold behavior is analyzed in some depth, as are their final outcomes. Velocities of spread of infection are considered when the populations have a spatial structure. A criterion for finding the equivalent contact distribution epidemic for any given dynamic population epidemic is provided, enabling comparisons to be made for the velocities and final outcomes displayed by the two classes of models. The relationship between deterministic and stochastic epidemic models is also discussed briefly.  相似文献   

10.
Epidemic control strategies alter the spread of the disease in the host population. In this paper, we describe and discuss mathematical models that can be used to explore the potential of pre-exposure and post-exposure vaccines currently under development in the control of tuberculosis. A model with bacille Calmette-Guerin (BCG) vaccination for the susceptibles and treatment for the infectives is first presented. The epidemic thresholds known as the basic reproduction numbers and equilibria for the models are determined and stabilities are investigated. The reproduction numbers for the models are compared to assess the impact of the vaccines currently under development. The centre manifold theory is used to show the existence of backward bifurcation when the associated reproduction number is less than unity and that the unique endemic equilibrium is locally asymptotically stable when the associated reproduction number is greater than unity. From the study we conclude that the pre-exposure vaccine currently under development coupled with chemoprophylaxis for the latently infected and treatment of infectives is more effective when compared to the post-exposure vaccine currently under development for the latently infected coupled with treatment of the infectives.  相似文献   

11.
Population size dependent incidence in models for diseases without immunity   总被引:4,自引:0,他引:4  
Epidemiological models of SIS type are analyzed to determine the thresholds, equilibria, and stability. The incidence term in these models has a contact rate which depends on the total population size. The demographic structures considered are recruitment-death, generalized logistic, decay and growth. The persistence of the disease combined with disease-related deaths and reduced reproduction of infectives can greatly affect the population dynamics. For example, it can cause the population size to decrease to zero or to a new size below its carrying capacity or it can decrease the exponential growth rate constant of the population.  相似文献   

12.
In this paper some properties of a convenient estimator, derived from a martingale estimating function, for the basic reproduction number of the general epidemic model are given for both finite and large samples. These properties give some guidelines for using this convenient estimator. It is shown that it underestimates the parameter and that the bias tends to zero when the population size and the initial number of infectives are increased simultaneously. The bias cannot be removed for a fixed number of introductory infectives. However, the estimator is asymptotically unbiased, conditional on a major outbreak. A simulation study shows that the central limit theorem applies for moderate population sizes.  相似文献   

13.
In this paper we analyze a model for the HIV-infection transmission in a male homosexual population. In the model we consider two types of infected individuals. Those that are infected but do not know their serological status and/or are not under any sort of clinical /therapeutical treatment, and those who are. The two groups of infectives differ in their incubation time, contact rate with susceptible individuals, and probability of disease transmission. The aim of this article is to study the roles played by detection and changes in sexual behavior in the incidence and prevalence of HIV. The analytical results show that there exists a unique endemic equilibrium which is globally asymptotically stable under a range of parameter values whenever a detection /treatment rate and an indirect measure of the level of infection risk are sufficiently large. However, any level of detection/ treatment rate coupled with a decrease of the transmission probability lowers the incidence rate and prevalence level in the population. In general, only significant reductions in the transmission probability (achieved through, for example, the adoption of safe sexual practices) can contain effectively the spread of the disease.  相似文献   

14.
We study an open population stochastic epidemic model from the time of introduction of the disease, through a possible outbreak and to extinction. The model describes an SIS (susceptible–infective–susceptible) epidemic where all individuals, including infectious ones, reproduce at a given rate. An approximate expression for the outbreak probability is derived using a coupling argument. Further, we analyse the behaviour of the model close to quasi-stationarity, and the time to disease extinction, with the aid of a diffusion approximation. In this situation the number of susceptibles and infectives behaves as an Ornstein–Uhlenbeck process, centred around the stationary point, for an exponentially distributed time before going extinct.  相似文献   

15.
A tuberculosis model which incorporates treatment of infectives and chemoprophylaxis is presented. The model assumes that latently infected individuals develop active disease as a result of endogenous re-activation, exogenous re-infection and disease relapse, though a small fraction is assumed to develop active disease soon after infection. We start by formulating and analyzing a TB model without any intervention strategy that we extend to incorporate chemoprophylaxis and treatment of infectives. The epidemic thresholds known as reproduction numbers and equilibria for the models are determined, and stabilities analyzed. The reproduction numbers for the models are compared to assess the possible community benefits achieved by treatment of infectives, chemoprophylaxis and a holistic approach of these intervention strategies. The study shows that treatment of infectives is more effective in the first years of implementation (≈ 10 years) as treatment results in clearing active TB immediately and there after chemoprophylaxis will do better in controlling the number of infectives due to reduced progression to active TB.  相似文献   

16.
This paper deals with the nonlinear dynamics of a susceptible-infectious-recovered (SIR) epidemic model with nonlinear incidence rate, vertical transmission, vaccination for the newborns of susceptible and recovered individuals, and the capacity of treatment. It is assumed that the treatment rate is proportional to the number of infectives when it is below the capacity and constant when the number of infectives reaches the capacity. Under some conditions, it is shown that there exists a backward bifurcation from an endemic equilibrium, which implies that the disease-free equilibrium coexists with an endemic equilibrium. In such a case, reducing the basic reproduction number less than unity is not enough to control and eradicate the disease, extra measures are needed to ensure that the solutions approach the disease-free equilibrium. When the basic reproduction number is greater than unity, the model can have multiple endemic equilibria due to the effect of treatment, vaccination and other parameters. The existence and stability of the endemic equilibria of the model are analyzed and sufficient conditions on the existence and stability of a limit cycle are obtained. Numerical simulations are presented to illustrate the analytical results.  相似文献   

17.
In this paper we consider a modification of Bailey's stochastic model for the spread of an epidemic when there are seasonal variations in infection rate. The resulting nonlinear model is analyzed by employing the diffusion approximation technique. We have shown that for a large population the process, on suitable scaling and normalization, converges to a non-stationary Ornstein-Uhlenbeck process. Consequently the number of infectives has in the steady state a gaussian distribution.  相似文献   

18.
 In this paper, known results on optimal intervention policies for the general stochastic epidemic model are extended to epidemic models with more general infection and removal rate functions. We consider first policies allowing for the isolation of any number of infectives from the susceptible population at any time, secondly policies allowing for the immunisation of the entire susceptible population at any time, and finally policies allowing for either of these interventions. In each case the costs of infection, isolation and immunisation are assumed to have a particular, rather simple, form. Sufficient conditions are given on the infection and removal rate functions of the model for the optimal policies to take the same simple form as in the case of the general stochastic epidemic model. More general costs are briefly discussed, and some numerical examples given. Finally, we discuss possible directions for further work. Received: 16 February 1999  相似文献   

19.
A seasonally forced nonlinear SEIR epidemic model is used to simulate small and large amplitude periodic outbreaks. The model is shown to exhibit bistable behavior for a fixed set of parameters. Basins of attraction for each recurrent outbreak are computed, and it is shown that the basins of two coexisting stable outbreaks are intertwined in a complicated manner. The effect of such a basin structure is shown to result in an obstruction in predicting asymptotically the type of outbreak given an uncertainty in the initial population of susceptibles and infectives.  相似文献   

20.
The impact of individual and community behavioral changes in response to an outbreak of a disease with high mortality is often not appreciated. Response strategies to a smallpox bioterrorist attack have focused on interventions such as isolation of infectives, contact tracing, quarantine of contacts, ring vaccination, and mass vaccination. We formulate and analyze a mathematical model in which some individuals lower their daily contact activity rates once an epidemic has been identified in a community. Transmission parameters are estimated from data and an expression is derived for the effective reproduction number. We use computer simulations to analyze the effects of behavior change alone and in combination with other control measures. We demonstrate that the spread of the disease is highly sensitive to how rapidly people reduce their contact activity rates and to the precautions that the population takes to reduce the transmission of the disease. Even gradual and mild behavioral changes can have a dramatic impact in slowing an epidemic. When behavioral changes are combined with other interventions, the epidemic is shortened and the number of smallpox cases is reduced. We conclude that for simulations of a smallpox outbreak to be useful, they must consider the impact of behavioral changes. This is especially true if the model predictions are being used to guide public health policy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号