首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel TEM-derived plasmid-encoded beta-lactamase, resistant to inhibition by clavulanic acid, has been identified in a clinical strain of Escherichia coli found in Scotland. The beta-lactamase gene was carried on an 81-kb plasmid that conferred no other resistances. The novel enzyme conferred resistance to the amoxycillin/clavulanic acid combination on the host bacterium. The beta-lactamase has a pI of 5.25 and lies between the PSE-4 and SAR-1 beta-lactamases on an isoelectric focusing gel. This beta-lactamase has a Mr value of 25,000, similar to the TEM-1 enzyme and a comparable substrate profile. Its most significant difference is that it is inhibited by clavulanic acid 100-fold less efficiently than the TEM-1 enzyme. The enzyme was confirmed to be derived from the TEM enzymes by probing the plasmid DNA with an intragenic gene probe for TEM-1. This is the first report of a clinical bacterium carrying a TEM-enzyme that confers resistance to clavulanic acid combinations and we have designated the beta-lactamase as TRC-1.  相似文献   

2.
A novel beta-lactamase (beta-lactam-hydrolase, EC 3.5.2.6) was detected in a culture of Pseudomonas C, an obligatory methylotroph. This is the first beta-lactamase discovered in a methylotrophic organism. The inducible cell-bound enzyme with broad-spectrum activity against penicillins, was purified 77-fold from cell extracts of the methanol-grown bacterium, and its molecular weight was estimated to be 30,000. As a group, the isoxazolyl penicillins are the favored substrates, while cephalosporins are resistant to hydrolysis and act as mild competitive inhibitors. The activity of this M-OXA beta-lactamase focused as a single band at an acidic pI value (5.5) similar to that of PSE- and TEM-type enzymes, but can be clearly distinguished from other OXA-type beta-lactamases, all of which focus in the alkaline region. The enzyme is coded by a non-transferable gene. Based on the sum of its physical and biochemical properties, the M-OXA beta-lactamase is distinguishable from all previously described beta-lactamases, although immunological studies revealed some cross reactivity with the plasmid mediated OXA-2 enzyme.  相似文献   

3.
Translational fusion with a secretory enzyme as an indicator.   总被引:14,自引:9,他引:5       下载免费PDF全文
A novel type of translational fusion system has been developed by using a secretory protein, staphylococcal beta-lactamase, as an indicator. The beta-lactamase structural gene was modified to provide N-terminal extensions of 13 and 162 amino acids, and in both cases, the fusion protein was processed and the mature active enzyme was secreted; thus, the expression of a particular upstream gene can be analyzed by monitoring the beta-lactamase activity.  相似文献   

4.
Several beta-lactamases, enzymes that play an important part in antibiotic resistance, have been purified by affinity chromatography on boronic acid gels. The procedure is rapid, appears to be selective for beta-lactamases, and allows a one-step purification of large amounts of enzyme from crude cell extracts. We have found the method useful for any beta-lactamase that is inhibited by boronic acids. Two kinds of boronic acid column have been prepared, the more hydrophobic one being reserved for those beta-lactamases that bind boronic acids relatively weakly. beta-Lactamase I from Bacillus cereus, P99 beta-lactamase and K 1 beta-lactamase from Gram-negative bacteria are among the better-known beta-lactamases that have been purified by this method. The procedure has also been used to purify a novel beta-lactamase from Pseudomonas maltophilia in high yield; the enzyme has an exceptionally broad substrate profile and hydrolyses monocyclic beta-lactams such as azthreonam and desthiobenzylpenicillin.  相似文献   

5.
1. A beta-lactamase has been purified from a strain of Enterobacter cloacae. 2. This enzyme is about eighty times as active against cephaloridine as against benzylpenicillin or ampicillin. 3. The enzyme has a net positive charge at pH8.0 and a molecular weight of about 14000. 4. An approximate amino acid composition of the enzyme is reported.  相似文献   

6.
Metallo-beta-lactamases (MBLs) are considered an emerging family of Zn2+-dependent enzymes that significantly contribute to the resistance of many nosocomial pathogens against beta-lactam antimicrobials. Since these plasmid-encoded enzymes constitute specific molecular targets for beta-lactams, their exact mode of action is greatly important in deploying efficient anti-infective treatments and for the control of severe multi-resistant nosocomial infections, which becomes a global problem. A novel hybrid VIM-1/VIM-2-type beta-lactamase (named VIM-12) has recently been identified in a clinical isolate of Klebsiella pneumoniae in Greece. The sequence of this enzyme is highly similar with that of VIM-1 at its N-terminal region and with that of VIM-2 at its C-terminal region, raising the question of whether this sequence similarity reflects also a similar functional role. Moreover, the possible contribution of this novel beta-lactamase to the overall antibiotic resistance of this specific clinical isolate was investigated. The gene encoding VIM-12 was cloned and expressed, and the recombinant enzyme was used for detailed kinetic analysis, using a variety of beta-lactam antibiotics. VIM-12 was found to exhibit narrow substrate specificity, compared to other known beta-lactamases, limited mainly to penicillin and to a much lesser extent to imipenen. Interestingly, meropenem was found to act as a noncompetitive inhibitor of the enzyme, although the active site of VIM-12 exhibited complete conservation of residues among VIM enzymes. We conclude that VIM-12 represents a novel and unique member of the family of known metallo-beta-lactamases, exhibiting atypical substrate specificity.  相似文献   

7.
Two species of beta-lactamase determined by plasmids in enteric bacteria that show some resemblance to TEM enzymes are described. Both are distinct from all other plasmid-mediated beta-lactamases and differ from the TEM beta-lactamases in ability to hydrolyze some substrates, in isoelectric point, in immunological specificity, and in susceptibility to inhibition. One of the enzyme species, mediated by plasmid p453, has been briefly described previously. We have discovered that this beta-lactamase, designated SHV-1, is unique in its response to inhibition by the sulfhydryl group reagent p-chloromercuribenzoate, because the hydrolysis of cephaloridine but not that of benzylpenicillin is affected. This enzyme is found in a variety of plasmid types which were transferred from several bacterial species collected from a wide geographic range. The other enzyme species is novel; only a single plasmid determining this kind of beta-lactamase (designated HMS-1) has been detected.  相似文献   

8.
Although inhibitors typically bind pre-formed sites on proteins, it is theoretically possible to inhibit by disrupting the folded structure of a protein or, in the limit, to bind preferentially to the unfolded state. Equilibria defining how such molecules act are well understood, but structural models for such binding are unknown. Two novel inhibitors of beta-lactamase were found to destabilize the enzyme at high temperatures, but at lower temperatures showed no preference for destabilized mutant enzymes versus stabilized mutants. X-ray crystal structures showed that both inhibitors bound to a cryptic site in beta-lactamase, which the inhibitors themselves created by forcing apart helixes 11 and 12. This opened up a portion of the hydrophobic core of the protein, into which these two inhibitors bind. Although this binding site is 16 A from the center of the active site, the conformational changes were transmitted through a sequence of linked motions to a key catalytic residue, Arg244, which in the complex adopts conformations very different from those in catalytically competent enzyme conformations. These structures offer a detailed view of what has heretofore been a theoretical construct, and suggest the possibility for further design against this novel site.  相似文献   

9.
The title compound 4 has been prepared in four steps from ethylglycinate in 63% overall yield. This amino analog of citric acid has been co-crystallized with the class A beta-lactamase BS3 of Bacillus licheniformis and the structure of the complex fully analyzed by X-ray diffraction. Tris-ethyl aminocitrate 3 and the free tris-acid 4 have been tested against a member beta-lactamase from all distinct subgroups. They are novel inhibitors of class A beta-lactamases, still modest but more potent than citrate and isocitrate.  相似文献   

10.
A novel beta-lactamase enzyme produced by a strain of Pseudomonas paucimobilis is described. The enzyme differs from other recorded beta-lactamases from Gram-negative aerobic bacteria. It was constitutive, and had the characteristics of a penicillinase. One single band of beta-lactamase activity at pI 4.6 was seen on iso-electric focusing. The enzyme had a molecular mass of 30 kDa. The beta-lactamase was strongly inhibited by tazobactam, sulbactam and clavulanic acid but not by the thiol residue inhibitors p-chloromercuribenzoate and p-chloromercuriphenylsulphonic acid, or by metallo-enzyme inhibitors. Plasmid DNA was not demonstrable, suggesting that the enzyme was chromosomally encoded.  相似文献   

11.
Beta-lactams with 6alpha (penicillins) or 7alpha (cephalosporins) substituents are often beta-lactamase inhibitors. This paper assesses the effect of such substituents on acyclic beta-lactamase substrates. Thus, a series of m-carboxyphenyl phenaceturates, substituted at the glycyl alpha-carbon by -OMe, -CH(2)OH, -CO(2)(-), and -CH(2)NH(3)(+), have been prepared, and tested for their reactivity against serine beta-lactamases. The latter two are novel substituents in beta-lactamase substrates. The methoxy and hydroxymethyl compounds were found to be poor to moderately good substrates, depending on the enzyme. The aminomethyl compound gave rise to a transiently stable (t(1/2)=4.6s) complex on its reaction with a class C beta-lactamase. The reactivity of the compounds against three low molecular weight DD-peptidases was also tested. Again, the methoxy and hydroxymethyl compounds proved to be quite good substrates with no sign of inhibitory complexes. The DD-peptidases reacted with one enantiomer (the compounds were prepared as racemates), presumably the D compound. The class C beta-lactamase reacted with both D and L enantiomers although it preferred the latter. The structural bases of these stereo-preferences were explored by reference to the crystal structure of the enzyme by molecular modeling studies. The aminomethyl compound was unreactive with the DD-peptidases, whereas the carboxy compound did not react with any of the above-mentioned enzymes. The inhibitory effects of the -OMe and -CH(2)OH substituents in beta-lactams apparently require a combination of the substituent and the pendant leaving group of the beta-lactam at the acyl-enzyme stage.  相似文献   

12.
A novel beta-lactamase, conferring resistance to ceftazidime, has been identified to be encoded by a 31 kb plasmid (pUK720) in a clinical E. coli strain isolated in Belgium. The beta-lactamase, new designated TEM-E1, has a pI of approximately 5.4 and lies in between the iso-electric focused bands of the beta-lactamases TEM-1 and TEM-7. The TEM-E1 beta-lactamase has a similar molecular weight of 22,000 to the TEM-1 and it is also inhibited by clavulanic acid. However, the TEM-E1 enzyme differs from TEM-1 by its low rates and efficiency of hydrolysis for ceftazidime and cefotaxime, TEM-E1 has similar efficiency of hydrolysis values for ceftazidime and cefotaxime, but only confers resistance to ceftazidime.  相似文献   

13.
6-Aminopenicillanic acid, 7-aminocephalosporanic acid, mecillinam and quinacillin have varying substrate activities for both the R39 beta-lactamase (excreted by Actinomadura R39) and the G beta-lactamase (excreted by Streptomyces albus G). Cefoxitin and quinacillin sulphone are not recognized by the G beta-lactamase and are weak inactivators of the R39 beta-lactamase. N-Formimidoylthienamycin is a poor substrate for the G beta-lactamase and a potent inactivator of the R39 beta-lactamase. The high value of the bimolecular rate constant for enzyme inactivation is mainly due to a very low dissociation constant (1 microM). Clavulanate is an inactivator of both G and R39 beta-lactamases. The reaction with this latter enzyme is a branched pathway where normal turnover and permanent enzyme inactivation occur concomitantly. Between 28 and 43 molecules of clavulanate are hydrolysed before one of them has the opportunity to inactivate one molecule of enzyme.  相似文献   

14.
Bacterial resistance to the third-generation cephalosporins is an issue of great concern in current antibiotic therapeutics. An important source of this resistance is from production of extended-spectrum (ES) beta-lactamases by bacteria. The Enterobacter cloacae GC1 enzyme is an example of a class C ES beta-lactamase. Unlike wild-type (WT) forms, such as the E. cloacae P99 and Citrobacter freundii enzymes, the ES GC1 beta-lactamase is able to rapidly hydrolyze third-generation cephalosporins such as cefotaxime and ceftazidime. To understand the basis for this ES activity, m-nitrophenyl 2-(2-aminothiazol-4-yl)-2-[(Z)-methoxyimino]acetylaminomethyl phosphonate has been synthesized and characterized. This phosphonate was designed to generate a transition state analog for turnover of cefotaxime. The crystal structures of complexes of the phosphonate with both ES GC1 and WT C. freundii GN346 beta-lactamases have been determined to high resolution (1.4-1.5 Angstroms). The serine-bound analog of the tetrahedral transition state for deacylation exhibits a very different binding geometry in each enzyme. In the WT beta-lactamase the cefotaxime-like side chain is crowded against the Omega loop and must protrude from the binding site with its methyloxime branch exposed. In the ES enzyme, a mutated Omega loop adopts an alternate conformation allowing the side chain to be much more buried. During the binding and turnover of the cefotaxime substrate by this ES enzyme, it is proposed that ligand-protein contacts and intra-ligand contacts are considerably relieved relative to WT, facilitating positioning and activation of the hydrolytic water molecule. The ES beta-lactamase is thus able to efficiently inactivate third-generation cephalosporins.  相似文献   

15.
A series of specific alpha-ketoheterocycles (benzoxazole, thiazole, imidazole, tetrazole, and thiazole-4-carboxylate) has been synthesized in order to assess their potential as beta-lactamase inhibitors. The syntheses were achieved either by construction of the heterocycle (benzoxazole) from an appropriate alpha-hydroxyimidate, followed by oxidation of the alcohol, or by direct reaction of methyl phenaceturate with a lithiated heterocycle. The properties of these compounds in aqueous solution are described and their inhibitory activity against beta-lactamases assessed. They did inhibit the class C beta-lactamase of Enterobacter cloacae P99 but not the TEM beta-lactamase. The most effective inhibitor of the former enzyme (K(i)=0.11 mM) was 5-(phenylacetylglycyl) tetrazole, probably because it is an anion at neutral pH. Interpretation of the results was aided by computational models of the tetrahedral adducts. Most of the compounds also inhibited alpha-chymotrypsin but not porcine pancreatic elastase.  相似文献   

16.
T Maejima  Y Ohya  S Mitsuhashi  M Inoue 《Plasmid》1987,18(2):120-126
The gene(s) for chromosome-mediated beta-lactamase production of Proteus vulgaris GN7919 was cloned into a unique EcoRI site of pACYC184 as an insert of a 14.2-kb fragment, which was further digested into two fragments with EcoRI, 4.9 and 9.3 kb. The restriction enzyme digestion pattern of the recombinant plasmid, designated pMS182, had no similarity to those of other chromosomal beta-lactamase genes cloned from gram-negative bacteria. Plasmid pMS182 enabled host Escherichia coli ML4953 to inducibly produce beta-lactamase which was identical to that of the parent P. vulgaris in substrate profile, molecular weight, and reactivity to antiserum raised against P. vulgaris GN7919 beta-lactamase. The pMS182-harboring E. coli were highly resistant to beta-lactam antibiotics, possibly based on inducible production of beta-lactamase.  相似文献   

17.
A pCb plasmid encoding a beta-lactamase from Haemophilus ducreyi was transferred to Escherichia coli, purified, and characterized. The beta-lactamase could be isolated from a culture filtrate and further purified by ammonium sulfate and chelating Sepharose fast flow loaded with Zn(2+). The purified enzyme resulted in a major band at approximately 30-kDa on SDS-PAGE and its pI was determined to be 5.4. The beta-lactamase could hydrolyze both penicillin antibiotics including ampicillin, benzylpenicillin, and carbenicillin as well as cephalosporin antibiotics including nitrocefin, cephalothin, cephaloridine, and cefoperazone. However, benzylpenicillin was the best substrate. The enzyme activity was inhibited by clavulanic acid but not by boric acid, cefotaxime, ethylenediaminetetraacetic acid, or phenylmethylsulfonyl fluoride. The sequence of the beta-lactamase gene was also determined. It confirmed that the enzyme belonged to a class A beta-lactamase which had 99% identity to the ampicillin resistance transposon Tn3 of pBR322. Two nucleotides were different between the E. coli (Tn3) and H. ducreyi (pCb) genes that affected the amino-acid sequence. The valine at position 82 (ABL 84) was changed to isoleucine and the alanine at position 182 (ABL 184) was changed to valine. Genetic homogeneity among beta-lactamases is remarkable. Amino acid sequencing of some beta-lactamases has shown that substitution of only a few amino acids in the bla gene leads to high-level resistance against specific cephalosporins.  相似文献   

18.
The beta-lactamase crude extract of Bacteroides fragilis 55 was chromatographed with DEAE-sepharose CL-6B and sephadex G-100. The partial purified enzyme proteins was further purified by cutting the band on PAGE in which the beta-lactamase was distinguishable from other proteins by our method of fluorescent staining. Using purified preparations to be mixed with liposome-CPS-K, prepared specific antisera against the purified beta-lactamase. Serological reactions were carried out by IgG-ELISA together with western blotting. The results revealed that Bacteroides fragilis beta-lactamase possessed its species-specificity.  相似文献   

19.
The beta-lactam antibiotics act through their inhibition of D-alanyl-D-alanine transpeptidases (DD-peptidases) that catalyze the last step of bacterial cell wall synthesis. Bacteria resist beta-lactams by a number of mechanisms, one of the more important of which is the production of beta-lactamases, enzymes that catalyze the hydrolysis of these antibiotics. The serine beta-lactamases are evolutionary descendants of DD-peptidases and retain much of their structure, particularly at the active site. Functionally, beta-lactamases differ from DD-peptidases in being able to catalyze hydrolysis of acyl-enzyme intermediates derived from beta-lactams and being unable to efficiently catalyze acyl transfer reactions of D-alanyl-D-alanine terminating peptides. The class C beta-lactamase of Enterobacter cloacae P99 is closely similar in structure to the DD-peptidase of Streptomyces R61. Previous studies have demonstrated that the evolution of the beta-lactamase, presumably from an ancestral DD-peptidase similar to the R61 enzyme, included structural changes leading to rejection of the D-methyl substituent of the penultimate D-alanine residue of the DD-peptidase substrate. This seems to have been achieved by suitable placement of the side chain of Tyr 221 in the beta-lactamase. We show in this paper that mutation of this residue to Gly 221 produces an enzyme that more readily hydrolyzes and aminolyzes acyclic D-alanyl substrates than glycyl analogues, in contrast to the wild-type beta-lactamase; the mutant is therefore a more efficient DD-peptidase. Molecular modeling showed that the D-alanyl methyl group fits snugly into the space originally occupied by the Tyr 221 side chain and, in doing so, allows the bound substrate to assume a conformation similar to that on the R61 DD-peptidase, which has a hydrophobic pocket for this substituent. Another mutant of the P99 beta-lactamase, the extended spectrum GC1 enzyme, also has space available for a D-alanyl methyl group because of an extended omega loop. In this case, however, no enhancement of activity against D-alanyl substrates with respect to glycyl was observed. Accommodation of the penultimate D-alanyl methyl group is therefore necessary for efficient DD-peptidase activity, but not sufficient.  相似文献   

20.
beta-Lactamases hydrolyze beta-lactam antibiotics, a reaction that destroys their antibacterial activity. These enzymes, of which four classes are known, are the primary cause of resistance to beta-lactam antibiotics. The class A beta-lactamases form the largest group. A novel class A beta-lactamase, named the nonmetallocarbapenamase of class A (NMC-A) beta-lactamase, has been discovered recently that has a broad substrate profile that included carbapenem antibiotics. This is a serious development, since carbapenems have been relatively immune to the action of these resistance enzymes. Inhibitors for this enzyme are sought. We describe herein that a type of monobactam molecule of our design inactivates the NMC-A beta-lactamase rapidly, efficiently, and irreversibly. The mechanism of inactivation was investigated by solving the x-ray structure of the inhibited NMC-A enzyme to 1.95 A resolution. The structure shed light on the nature of the fragmentation of the inhibitor on enzyme acylation and indicated that there are two acyl-enzyme species that account for enzyme inhibition. Each of these inhibited enzyme species is trapped in a distinct local energy minimum that does not predispose the inhibitor species for deacylation, accounting for the irreversible mode of enzyme inhibition. Molecular dynamics simulations provided evidence in favor of a dynamic motion for the acyl-enzyme species, which samples a considerable conformational space prior to the entrapment of the two stable acyl-enzyme species in the local energy minima. A discussion of the likelihood of such dynamic motion for turnover of substrates during the normal catalytic processes of the enzyme is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号