首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A brief review of the available information concerning age-related genomic (DNA) damage and its repair, with special reference to brain tissue, is presented. The usefulness of examining the validity of DNA-damage and repair hypothesis of aging in a postmitotic cell like neuron is emphasized. The limited number of reports that exist on brain seem to overwhelmingly support the accumulation of DNA damage with age. However, results regarding the age-dependent decline in DNA-repair capacity are conflicting and divided. The possible reasons for these discrepancies are discussed in light of the gathering evidence, including some human genetic disorders, to indicate how complex is the DNA-repair system in higher animals. It is suggested that assessment of repair potential of neurons with respect to a specific damage in a specific gene might yield more definitive answers about the DNA-repair process and its role in aging.  相似文献   

2.
According to a long-standing hypothesis, aging is mainly caused by accumulation of nuclear (n) DNA damage in differentiated cells such as neurons due to insufficient nDNA repair during lifetime. In line with this hypothesis it was until recently widely accepted that neuron loss is a general consequence of normal aging, explaining some degree of decline in brain function during aging. However, with the advent of more accurate procedures for counting neurons, it is currently widely accepted that there is widespread preservation of neuron numbers in the aging brain, and the changes that do occur are relatively specific to certain brain regions and types of neurons. Whether accumulation of nDNA damage and decline in nDNA repair is a general phenomenon in the aging brain or also shows cell-type specificity is, however, not known. It has not been possible to address this issue with the biochemical and molecular-biological methods available to study nDNA damage and nDNA repair. Rather, it was the introduction of autoradiographic methods to study quantitatively the relative amounts of nDNA damage (measured as nDNA single-strand breaks) and nDNA repair (measured as unscheduled DNA synthesis) on tissue sections that made it possible to address this question in a cell-type-specific manner under physiological conditions. The results of these studies revealed a formerly unknown inverse relationship between age-related accumulation of nDNA damage and age-related impairment in nDNA repair on the one hand, and the age-related, selective, loss of neurons on the other hand. This inverse relation may not only reflect a fundamental process of aging in the central nervous system but also provide the molecular basis for a new approach to understand the selective neuronal vulnerability in neurodegenerative diseases, particularly Alzheimer's disease.  相似文献   

3.
4.
Accumulation of DNA damage is implicated in aging. This is supported by the fact that inherited defects in DNA repair can cause accelerated aging of tissues. However, clear-cut evidence for DNA damage accumulation in old age is lacking. Numerous studies report measurement of DNA damage in nuclear and mitochondrial DNA from tissues of young and old organisms, with variable outcomes. Variability results from genetic differences between specimens or the instability of some DNA lesions. To control these variables and test the hypothesis that elderly organisms have more oxidative DNA damage than young organisms, we measured 8,5'-cyclopurine-2'-deoxynucleosides (cPu), which are relatively stable, in tissues of young and old wild-type and congenic progeroid mice. We found that cPu accumulate spontaneously in the nuclear DNA of wild-type mice with age and to a greater extent in DNA repair-deficient progeroid mice, with a similar tissue-specific pattern (liver > kidney > brain). These data, generated under conditions where genetic and environmental variables are controlled, provide strong evidence that DNA repair mechanisms are inadequate to clear endogenous lesions over the lifespan of mammals. The similar, although exaggerated, results obtained from progeroid, DNA repair-deficient mice and old normal mice support the conclusion that DNA damage accumulates with, and likely contributes to, aging.  相似文献   

5.
The biological mechanisms responsible for aging remain poorly understood. We propose that increases in DNA damage and mutations that occur with age result from a reduced ability to repair DNA damage. To test this hypothesis, we have measured the ability to repair DNA damage in vitro by the base excision repair (BER) pathway in tissues of young (4-month-old) and old (24-month-old) C57BL/6 mice. We find in all tissues tested (brain, liver, spleen and testes), the ability to repair damage is significantly reduced (50-75%; P<0.01) with age, and that the reduction in repair capacity seen with age correlates with decreased levels of DNA polymerase beta (beta-pol) enzymatic activity, protein and mRNA. To determine the biological relevance of this age-related decline in BER, we measured spontaneous and chemically induced lacI mutation frequency in young and old animals. In line with previous findings, we observed a three-fold increase in spontaneous mutation frequency in aged animals. Interestingly, lacI mutation frequency in response to dimethyl sulfate (DMS) does not significantly increase in young animals whereas identical exposure in aged animals results in a five-fold increase in mutation frequency. Because DMS induces DNA damage processed by the BER pathway, it is suggested that the increased mutagenicity of DMS with age is related to the decline in BER capacity that occurs with age. The inability of the BER pathway to repair damages that accumulate with age may provide a mechanistic explanation for the well-established phenotype of DNA damage accumulation with age.  相似文献   

6.
The aging of tissue-specific stem and progenitor cells is believed to be central to the pathophysiological conditions arising in aged individuals. While the mechanisms driving stem cell aging are poorly understood, mounting evidence points to age-dependent DNA damage accrual as an important contributing factor. While it has been postulated that DNA damage may deplete stem cell numbers with age, recent studies indicate that murine hematopoietic stem cell (HSC) reserves are in fact maintained despite the accrual of genomic damage with age. Evidence suggests this to be a result of the quiescent (G0) cell cycle status of HSC, which results in an attenuation of checkpoint control and DNA damage responses for repair or apoptosis. When aged stem cells that have acquired damage are called into cycle under conditions of stress or tissue regeneration however, their functional capacity was shown to be severely impaired. These data suggest that age-dependent DNA damage accumulation may underlie the diminished capacity of aged stem cells to mediate a return to homeostasis after acute stress or injury. Moreover, the cytoprotection afforded by stem cell quiescence in stress-free, steady-state conditions suggests a mechanism through which potentially dangerous lesions can accumulate in the stem cell pool with age.  相似文献   

7.
Accumulation of DNA damage caused by oxidative stress is thought to be one of the main contributors of human tissue aging. Trichothiodystrophy (TTD) mice have a mutation in the Ercc2 DNA repair gene, resulting in accumulation of DNA damage and several features of segmental accelerated aging. We used male TTD mice to study the impact of DNA repair on bone metabolism with age. Analysis of bone parameters, measured by micro-computed tomography, displayed an earlier decrease in trabecular and cortical bone as well as a loss of periosteal apposition and a reduction in bone strength in TTD mice with age compared to wild type mice. Ex vivo analysis of bone marrow differentiation potential showed an accelerated reduction in the number of osteogenic and osteoprogenitor cells with unaltered differentiation capacity. Adipocyte differentiation was normal. Early in life, osteoclast number tended to be increased while at 78 weeks it was significantly lower in TTD mice. Our findings reveal the importance of genome stability and proper DNA repair for skeletal homeostasis with age and support the idea that accumulation of damage interferes with normal skeletal maintenance, causing reduction in the number of osteoblast precursors that are required for normal bone remodeling leading to a loss of bone structure and strength.  相似文献   

8.
9.
The enzyme 8-oxoguanine DNA glycosylase 1 participates in the repair of damaged DNA by excising the oxidized base 8-hydroxy-2'-deoxyguanosine. We have previously demonstrated that enzymatic activity of this enzyme is inversely related to the levels of the damaged base in specific brain regions. We now report that the activity of 8-oxoguanine DNA glycosylase 1 is increased in a region-specific manner following treatment with diethylmaleate, a compound that reduces glutathione levels in the cell. A single treatment with diethylmaleate elicited a significant increase ( approximately 2-fold) in the activity of 8-oxoguanine DNA glycosylase 1 in three brain regions with low basal levels of activity (cerebellum, cortex, and pons/medulla). There was no change in the activity of 8-oxoguanine DNA glycosylase 1 in those regions with high basal levels of activity (hippocampus, caudate/putamen, and midbrain). This is the first report to demonstrate that DNA repair capacity can be upregulated in the CNS, and the increased repair activity correlates with a reduction in the levels of DNA damage. The brain region-specific capacity to deal with increased oxidative damage to DNA may be responsible, in part, for the vulnerability of specific neuronal populations with aging, sources of oxidative stress, and neurodegenerative diseases.  相似文献   

10.
Caloric restriction and genomic stability   总被引:1,自引:0,他引:1  
Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents while increasing mean and maximum life spans. It has been suggested that CR extends longevity and reduces age-related pathologies by reducing the levels of DNA damage and mutations that accumulate with age. This hypothesis is attractive because the integrity of the genome is essential to a cell/organism and because it is supported by observations that both cancer and immunological defects, which increase significantly with age and are delayed by CR, are associated with changes in DNA damage and/or DNA repair. Over the last three decades, numerous laboratories have examined the effects of CR on the integrity of the genome and the ability of cells to repair DNA. The majority of studies performed indicate that the age-related increase in oxidative damage to DNA is significantly reduced by CR. Early studies suggest that CR reduces DNA damage by enhancing DNA repair. With the advent of genomic technology and our increased understanding of specific repair pathways, CR has been shown to have a significant effect on major DNA repair pathways, such as NER, BER and double-strand break repair.  相似文献   

11.
Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects include neurocognitive dysfunction and peripheral neuropathy. These symptoms occur frequently and have not been effectively studied at the cellular or molecular level. Studies of DNA repair may help our understanding of how those cells that are not dividing could succumb to neurotoxicity with the clinical manifestations discussed in the following article.  相似文献   

12.
Chronic alcohol abuse has deleterious effects on several organs in the body including the brain. Neuroradiological studies have demonstrated that the brains of chronic alcoholics undergo loss of both gray and white matter volumes. Neuropathological studies using unbiased stereological methods have provided evidence for loss of neurons in specific parts of the brain in chronic alcoholics. The purpose of this paper is to propose a mechanism for this alcohol related neuronal loss. The hypothesis is based on the neurodegeneration observed in patients with the genetic disorder xeroderma pigmentosum (XP), who lack the capacity to carry out a specific type of DNA repair called nucleotide excision repair (NER). Some XP patients develop a progressive atrophic neurodegeneration, termed XP neurological disease, indicating that endogenous DNA damage that is normally repaired by NER has the capacity to cause neuronal death. Accumulating evidence indicates that the neurodegenerative DNA damage that is responsible for neuronal loss in XP patients results from reactive oxygen species (ROS) and lipid peroxidation products, and has the capacity to inhibit gene expression by RNA polymerase II. Therefore, the following model is proposed: chronic alcohol abuse results in increased levels of ROS and lipid peroxidation products in neurons, which results in an overwhelming burden on the NER pathway, and increased steady state levels of DNA lesions that inhibit gene expression. This results in neuronal death either by reduction in the levels of essential gene products or by apoptosis. The implications of this model for future studies are discussed.  相似文献   

13.
The role of DNA damage repair in aging of adult stem cells   总被引:3,自引:0,他引:3  
DNA repair maintains genomic stability and the loss of DNA repair capacity results in genetic instability that may lead to a decline of cellular function. Adult stem cells are extremely important in the long-term maintenance of tissues throughout life. They regenerate and renew tissues in response to damage and replace senescent terminally differentiated cells that no longer function. Oxidative stress, toxic byproducts, reduced mitochondrial function and external exposures all damage DNA through base modification or mis-incorporation and result in DNA damage. As in most cells, this damage may limit the survival of the stem cell population affecting tissue regeneration and even longevity. This review examines the hypothesis that an age-related loss of DNA damage repair pathways poses a significant threat to stem cell survival and longevity. Normal stem cells appear to have strict control of gene expression and DNA replication whereas stem cells with loss of DNA repair may have altered patterns of proliferation, quiescence and differentiation. Furthermore, stem cells with loss of DNA repair may be susceptible to malignant transformation either directly or through the emergence of cancer-prone stem cells. Human diseases and animal models of loss of DNA repair provide longitudinal analysis of DNA repair processes in stem cell populations and may provide links to the physiology of aging.  相似文献   

14.
Stuart GR  Oda Y  de Boer JG  Glickman BW 《Genetics》2000,154(3):1291-1300
Mutation frequency and specificity were determined as a function of age in nuclear DNA from liver, bladder, and brain of Big Blue lacI transgenic mice aged 1.5-25 months. Mutations accumulated with age in liver and accumulated more rapidly in bladder. In the brain a small initial increase in mutation frequency was observed in young animals; however, no further increase was observed in adult mice. To investigate the origin of mutations, the mutational spectra for each tissue and age were determined. DNA sequence analysis of mutant lacI transgenes revealed no significant changes in mutational specificity in any tissue at any age. The spectra of mutations found in aging animals were identical to those in younger animals, suggesting that they originated from a common set of DNA lesions manifested during DNA replication. The data also indicated that there were no significant age-related mutational changes due to oxidative damage, or errors resulting from either changes in the fidelity of DNA polymerase or the efficiency of DNA repair. Hence, no evidence was found to support hypotheses that predict that oxidative damage or accumulation of errors in nuclear DNA contributes significantly to the aging process, at least in these three somatic tissues.  相似文献   

15.
Monolayer cell cultures derived from B/C mouse embryos were examined for the ability to repair ultraviolet light-induced DNA damage (50–250 erg/mm2) during in vitro aging and subsequent alteration to a continuous cell line. Excision repair was measured by incubating the cultures with [3H]TdR and measuring DNA specific activity, and by performing quantitative autoradiography. DNA repair capacity declined during in vitro aging, and the level of repair correlated with the fraction of cells which retained the capacity to undergo scheduled DNA synthesis. This result indicates that mouse cells aged in vitro undergo a decline in their ability to repair UV-induced DNA damage comparable to that seen in cultured human fibroblasts. In cultures which spontaneously altered into continuously proliferating cell lines, DNA repair capacity increased to high levels, as did the fraction of cells capable of initiating scheduled DNA synthesis.  相似文献   

16.
Oxidative stress is thought to play a role in the pathogenesis of Alzheimer's disease (AD) and increased oxidative DNA damage has been observed in brain tissue from AD patients. Base excision repair (BER) is the primary DNA repair pathway for small base modifications such as alkylation, deamination and oxidation. In this study, we have investigated alterations in the BER capacity in brains of AD patients. We employed a set of functional assays to measure BER activities in brain tissue from short post-mortem interval autopsies of 10 sporadic AD patients and 10 age-matched controls. BER activities were also measured in brain samples from 9 amnestic mild cognitive impairment (MCI) subjects. We found significant BER deficiencies in brains of AD patients due to limited DNA base damage processing by DNA glycosylases and reduced DNA synthesis capacity by DNA polymerase β. The BER impairment was not restricted to damaged brain regions and was also detected in the brains of amnestic MCI patients, where it correlated with the abundance of neurofibrillary tangles. These findings suggest that BER dysfunction is a general feature of AD brains which could occur at the earliest stages of the disease. The results support the hypothesis that defective BER may play an important role in the progression of AD.  相似文献   

17.
Aging is associated with a reduction in the DNA repair capacity under oxidative stress. However, whether the DNA damage and repair capacity can be a biomarker of aging remains controversial. In this study, we demonstrated two cause-and-effect relationships, the one is between the DNA damage and repair capacity and the cellular age, another is between DNA damage and repair capacity and the level of oxidative stress in human embryonic lung fibroblasts (2BS) exposed to different doses of hydrogen peroxide (H2O2). To clarify the mechanisms of the age-related reduction in DNA damage and repair capacity, we preliminarily evaluated the expressions of six kinds of pivotal enzymes involved in the two classical DNA repair pathways. The DNA repair capacity was observed in human fibroblasts cells using the comet assay; the age-related DNA repair enzymes were selected by RT-PCR and then verified by Western blot in vitro. Results showed that the DNA repair capacity was negatively and linearly correlated with (i) cumulative population doubling (PD) levels only in the group of low concentration of hydrogen peroxide treatment, (ii) with the level of oxidative stress only in the group of young PD cells. The mRNA expression of DNA polymerase δ1 decreased substantially in senescent cells and showed negative linear-correlation with PD levels; the protein expression level was well consistent with the mRNA level. Taken together, DNA damage and repair capacity can be a biomarker of aging. Reduced expression of DNA polymerase δ1 may be responsible for the decrease of DNA repair capacity in senescent cells.  相似文献   

18.
Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions which create bursts of oxidative damage. Brain cells have a particularly high basal level of metabolic activity and use distinct oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools. Accumulation of this damage in the background of a functional DNA repair response is associated with normal aging, but defective repair in brain cells can contribute to neurological dysfunction. Emerging research strongly associates three common neurodegenerative conditions, Alzheimer's, Parkinson's and stroke, with defects in the ability to repair chronic or acute oxidative damage in neurons. This review explores the current knowledge of the role of oxidative damage repair in preserving brain function and highlights the emerging models and methods being used to advance our knowledge of the pathology of neurodegenerative disease.  相似文献   

19.
It has been suggested that genomic alterations involving DNA damage and the ability to repair such damage play an important role in cellular senescence. In this study, endogenous DNA single-strand breaks, the susceptibility of DNA to induced strand breakage and the capacity to repair these breaks were compared in postmitotic cells from young (3-day-old) and old (23-day-old) houseflies. DNA single-strand breaks did not accumulate during normal aging in the housefly. However, cells of the old flies exhibited a greater sensitivity to single-strand breakage induced by gamma-radiation and UV light. The capacity to repair these exogenously induced single-strand breaks declined with age. Results do not support the view that DNA single-strand breaks are a causal factor in aging in the housefly. An age-related increase in the susceptibility to undergo single-strand breakage suggests alterations in chromatin during the aging process.  相似文献   

20.
Bendtsen KM  Juul J  Trusina A 《PloS one》2012,7(5):e36018
DNA damages, as well as mutations, increase with age. It is believed that these result from increased genotoxic stress and decreased capacity for DNA repair. The two causes are not independent, DNA damage can, for example, through mutations, compromise the capacity for DNA repair, which in turn increases the amount of unrepaired DNA damage. Despite this vicious circle, we ask, can cells maintain a high DNA repair capacity for some time or is repair capacity bound to continuously decline with age? We here present a simple mathematical model for ageing in multicellular systems where cells subjected to DNA damage can undergo full repair, go apoptotic, or accumulate mutations thus reducing DNA repair capacity. Our model predicts that at the tissue level repair rate does not continuously decline with age, but instead has a characteristic extended period of high and non-declining DNA repair capacity, followed by a rapid decline. Furthermore, the time of high functionality increases, and consequently slows down the ageing process, if the DNA repair mechanism itself is vulnerable to DNA damages. Although counterintuitive at first glance, a fragile repair mechanism allows for a faster removal of compromised cells, thus freeing the space for healthy peers. This finding might be a first step toward understanding why a mutation in single DNA repair protein (e.g. Wrn or Blm) is not buffered by other repair proteins and therefore, leads to severe ageing disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号